【论文阅读】LoRA Meets Dropout under a Unified Framework

总体概要

本文探讨了在大型语言模型(LLMs)的参数高效微调(PEFT)中,LoRA方法与传统dropout技术之间的潜在矛盾。研究发现,尽管LoRA通过限制可训练参数的数量来减少过拟合,但它仍然容易受到过拟合的影响。通过数学和实证分析,文章揭示了现有dropout方法如DropKey、DropAttention和HiddenCut之间的等价性和差异性,并提出了一种统一的框架,用于在LoRA背景下评估和比较这些方法。基于此框架,文章提出了一种新的dropout方法——HiddenKey,它在多个模型和任务中展现出优越的性能,特别是在自然语言理解和生成任务中。文章强调,HiddenKey是解决LLMs在PEFT中过拟合问题的首选方法,为高性能和参数高效的微调提供了新的视角。

核心要点
  1. LoRA与Dropout的统一框架探索

    • 文章提出了LoRA(低秩适应)与传统Dropout方法在大型语言模型(LLMs)参数高效微调(PEFT)背景下的统一框架,旨在解决LoRA有限的训练参数与Dropout缓解过度拟合之间的潜在矛盾。
  2. LoRA的过度拟合倾向确认

    • 通过实验验证,即使在有限的训练参数下,LoRA仍然容易出现过拟合现象,这表明即使在小规模的参数调整中,模型仍需防止过拟合的策略。
  3. Transformer特定Dropout方法的理论与实证比较

    • 文章对比了DropKey、DropAttention和HiddenCut等Transformer特定的Dropout方法,揭示了它们在前向传播过程中的数学等价性和在后向传播中的差异,特别是在DropAttention中引入的梯度噪声问题。
  4. 统一框架下的方法实例化与偏好发现

    • 基于比较分析,文章提出了一个统一框架,通过该框架发现了在LoRA场景下这些Dropout方法的新偏好,例如跨度式HiddenCut不再优于元素式,以及DropKey表现最佳而DropAttention表现最差。
  5. 新型Dropout方法HiddenKey的提出与验证

    • 文章在统一框架指导下提出了名为HiddenKey的新型Dropout方法,该方法在多个模型和任务上展现出卓越的性能,填补了Dropout方法在自然语言生成(NLG)任务中效果研究的空白。
  6. 实验结果与性能比较

    • 通过广泛的实验,HiddenKey在多个模型和任务上均表现出优异的性能,证明了其在减轻LoRA过拟合倾向方面的有效性和充分性。
  7. 贡献总结

    • 文章的主要贡献包括首次全面调查了LoRA与Dropout方法之间的潜在矛盾,理论和实证比较了三种典型的Transformer特定Dropout方法,提出了一个统一框架以实例化现有方法并发现新偏好,以及设计了一种新型Dropout方法HiddenKey,展现了其在高

段落概要

Introduction

本文探讨了在大型语言模型(LLMs)的参数高效微调(PEFT)中,尤其是LoRA方法,与传统用于减少参数冗余和防止过拟合的dropout方法之间的潜在矛盾。研究发现,尽管LoRA通过限制可训练参数数量来提高效率,但它仍容易出现过拟合问题。通过数学和实证分析,文章揭示了不同dropout方法在LoRA框架下的等价性和差异性,并提出了一个统一的框架,用于比较和整合这些方法。基于此框架,文章提出了一种名为HiddenKey的新型dropout方法,该方法在多个模型和任务中展现出优越的性能,特别是在自然语言理解和生成任务中,强调了其在高性能和参数高效微调LLMs中的应用潜力。

Preliminaries

文章的“Preliminaries”部分回顾了三种针对Transformer模型的特定dropout方法:DropAttention、DropKey和HiddenCut。DropAttention通过随机屏蔽注意力权重的元素或键列,鼓励使用多个上下文化特征而非过度拟合特定模式。DropKey采用dropout-before-softmax方案,以注意力对数gj为基本单元,后续的softmax确保权重和为1,因此不需要重新缩放。HiddenCut则专注于防止前馈模块中隐藏表示的共适应,其核心思想是切割单个连续的跨度,可能包含更多语义信息且更难恢复,同时应用JS损失以鼓励扰动表示尽可能接近推理中的表示。这些方法为后续分析奠定了基础。

Method

文章的Method部分首先对现有的Transformer模型特定dropout方法进行了比较分析,包括DropKey、DropAttention和HiddenCut,并基于它们的相似性和差异性,提出了一个统一的dropout方法设计框架。该框架考虑了dropout的三个关键维度:dropping position(drop的位置)、structural pattern(drop的模式)和compensation measure(训练与推理间的补偿措施)。基于这一框架,文章提出了一种新的dropout方法——HiddenKey,它通过在attention机制中列式drop attention logits,在feed-forward模块中元素式drop hidden representations,并引入双向KL损失来减少训练和推理之间的差距。实验部分展示了HiddenKey在多种任务和模型上的优越性能。

Experiments

文章的实验部分展示了在多个自然语言处理(NLP)任务和模型上,通过引入名为HiddenKey的新型dropout方法,有效缓解了LoRA(Low-Rank Adaptation)模型在有限训练参数下的过拟合问题。实验涵盖了从RoBERTa-large到LLaMA2-7B等多种模型,以及包括GLUE基准数据集和NLG任务在内的广泛任务。结果表明,HiddenKey在各项任务中均优于基线方法,显著提升了模型性能。此外,实验还探讨了dropout的不同位置、结构模式及其补偿措施对模型性能的影响,并验证了KL损失在缩小训练与推理阶段差距方面的有效性。最终,HiddenKey被证实为在LoRA场景下缓解过拟合问题的推荐dropout方法。

Conclusion

文章结论部分的核心要点是:研究揭示了LoRA(Low-Rank Adaptation)在有限可训练参数下可能导致的过度拟合问题,并通过理论和实证分析现有dropout方法,提出了一种新的dropout方法——HiddenKey。HiddenKey在多个模型和数据集上表现出色,被推荐作为减轻LoRA场景中过度拟合问题的首选dropout方法。此外,文章也指出了HiddenKey引入的双向Kullback-Leibler(KL)散度损失可能导致训练时间延长,但通过并行化等方法可以减少这一影响。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值