交易心里分析感悟

交易心理分析感悟。

股市是一个自由的地方,除非你选择何时开始,他才会开始当你想要完全结束他才会结束,否则交易一直在进行。

因为股市太自由了,而且人们打心底里都向往自由,都想避免束缚,不想被条条框框拴住。所以就会产生很多随机性的交易,随机性的交易,可能会获利。但是如果想获得持之以冠的长期稳定收益,那随机性交易肯定不能满足。

人总是逃避错误和指责。不能担起责任,也就是我进入股市之后,有没有想好我要为后面发生的后果所负责。
我们习惯于把成功的交易原因功劳归结给自己,把失败的交易原因归结给市场。这样我们就不可能找到正确的交易方法。

想要获得长期稳定的收益,就需要制定规则。

恐惧?
如果你交易时感到恐惧。那你的操作就会变形,你对市场信息的解读也会受到影响,不能客观公正的看待市场信息。

成功交易者在交易时几乎能完全排除恐惧和鲁莽。
并且不再犯很多以恐惧为基础的错误,这种错误的起因是合理化、下意识地扭曲信息、犹豫不决、鲁莽从事和抱着希望。一旦你不再恐惧,就没有理由再犯这种错误,因此你进行交易时几乎不会再出现这种错误。

大部分亏损的原因不是技巧或市场知识不足,而是你对错误、亏损的态度和信念,以及你感觉愉快时容易变得鲁莽的倾向。

内容概要:本文研究基于SPEA2(Strength Pareto Evolutionary Algorithm 2)的移动机器人路径规划方法,利用该多目标优化算法在复杂环境中寻找最优或近似最优的机器人运动路径。文中详细阐述了SPEA2算法的基本原理及其在路径规划中的具体应用流程,并通过Matlab代码实现仿真验证,展示了算法在避障、路径平滑性和多目标优化方面的有效性。研究结合栅格地图建模,定义了包括路径长度、安全性与能耗在内的多个优化目标,体现了SPEA2在处理多目标冲突问题上的优势。; 适合人群:具备一定Matlab编程基础,从事智能优化算法、机器人路径规划或人工智能相关领域的研究生及科研人员;熟悉进化算法并希望将其应用于实际工程问题的技术开发者。; 使用场景及目标:①掌握SPEA2算法在移动机器人路径规划中的建模与实现方法;②学习如何将多目标优化思想融【移动机器人路径规划】基于SPEA2的移动机器人路径规划研究(Matlab代码实现)入路径规划问题;③为后续研究NSGA-II、MOEA/D等其他多目标算法提供对比基准和技术参考; 阅读建议:此资源以Matlab代码为核心支撑,建议读者结合算法原理部分仔细研读代码实现细节,动手运行仿真案例,深入理解适应度函数设计、非支配解集维护及环境建模的关键步骤,从而全面提升对多目标进化算法在机器人应用中的实践能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值