7.2 简单线性回归应用

  1. 简单线性回归模型举例:

汽车卖家做电视广告数量与卖出的汽车数量:
这里写图片描述

1.1 如何练处适合简单线性回归模型的最佳回归线?
这里写图片描述

这里写图片描述
使sum of squares最小

1.1.2 计算
这里写图片描述

分子 = (1-2)(14-20)+(3-2)(24-20)+(2-2)(18-20)+(1-2)(17-20)+(3-2)(27-20)
= 6 + 4 + 0 + 3 + 7
= 20

分母 = (1-2)^2 + (3-2)^2 + (2-2)^2 + (1-2)^2 + (3-2)^2
= 1 + 1 + 0 + 1 + 1
4

b1 = 20/4 =5
这里写图片描述

b0 = 20 - 5*2 = 20 - 10 = 10

这里写图片描述

1.2 预测:

假设有一周广告数量为6,预测的汽车销售量是多少?

这里写图片描述
x_given = 6

Y_hat = 5*6 + 10 = 40

1.3 Python实现:

# -*- encoding=utf-8 -*-
#简单现行回归:只有一个自变量 y=k*x+b 预测使 (y-y*)^2  最小

import numpy as np

def fitSLR(x,y):
    dinominator,numerator=0,0
    for i in range(len(x)):
        numerator+=(x[i]-np.mean(x))*(y[i]-np.mean(y))
        dinominator+=(x[i]-np.mean(x))**2

    print("numerator:" + str(numerator))
    print("dinominator:" + str(dinominator))

    b1=numerator/float(dinominator)
    b0=np.mean(y)-b1*(np.mean(x))

    return b0,b1

def predict(x,b0,b1):
    return b0+b1*x

x=[1,3,2,1,3]
y=[14,24,18,17,27]
b0,b1=fitSLR(x, y)
y_predict=predict(10, b0, b1);
print("y_prediect:"+str(y_predict))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值