7.6 回归中的相关度和R平方值

本文介绍了皮尔逊相关系数作为衡量两个变量线性相关强度的指标,其取值范围从-1到1,分别表示正向、负向和无相关性。此外,详细讲解了R平方值的概念,它是决定系数,表示自变量能解释因变量变异的比例。例如,R平方为0.8意味着回归模型解释了80%的因变量变异。同时,提到了R平方在简单线性和多元回归中的计算公式以及R平方的局限性和修正方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 皮尔逊相关系数 (Pearson Correlation Coefficient):
    1.1 衡量两个值线性相关强度的量
    1.2 取值范围 [-1, 1]:
    正向相关: >0, 负向相关:<0, 无相关性:=0

     1.3
    

    这里写图片描述
    这里写图片描述

  2. 计算方法举例:

X Y
1 10
3 12
8 24
7 21
9 34

  1. 其他例子:

    这里写图片描述

  2. R平方值:

    4.1定义:决定系数,反应因变量的全部变异能通过回归关系被自变量解释的比例。

    4.2 描述:如R平方为0.8,则表示回归关系可以解释因变量80%的变异。换句话说,如果我们能控制自变量不变,则因变量的变异程度会减少80%

    4.3: 简单线性回归:R^2 = r * r
    多元线性回归:
    这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值