pandas:使用concat函数合并数据集

Python 专栏收录该内容
11 篇文章 0 订阅

使用concat函数合并数据集

通过列表的形式,将需要合并的数据集作为第一个参数传入。数据集合并默认是按照第0个数轴合并,此时根据column索引值将对应的数据合并。没有的值则用NaN代替。

可以通过参数axis参数指定按照哪个数轴进行合并。

import numpy as np
import pandas as pd
arr = np.random.randint(10,size=(3,4))
df1 = pd.DataFrame(arr, columns=["A", "B", "C", "D"])
df1
ABCD
05448
18454
23181
arr = np.random.randint(10,size=(3,3))
df2 = pd.DataFrame(arr, columns=["C", "D", "E"])
df2
CDE
0756
1035
2469
  • 默认数据集是按照第0个轴合并的。对于某个数据集在某些列没有数据,则又NaN代替。
pd.concat([df1, df2], axis=0)
ABCDE
05.04.048NaN
18.04.054NaN
23.01.081NaN
0NaNNaN756.0
1NaNNaN035.0
2NaNNaN469.0
  • 通过修改axis参数,可以设置根据哪个轴进行合并。
pd.concat([df1, df2], axis=1)
ABCDCDE
05448756
18454035
23181469
  • 默认合并的模式是outer,即对于数据集没有的列,用NaN代替。可以使用join参数指定为inner模式,即只取所有数据集都共有的列进行合并。
pd.concat([df1, df2], join="outer")
ABCDE
05.04.048NaN
18.04.054NaN
23.01.081NaN
0NaNNaN756.0
1NaNNaN035.0
2NaNNaN469.0
pd.concat([df1, df2], join="inner")
CD
048
154
281
075
103
246
  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值