摘要
时间序列预测(TSF)中的分布移位(即序列分布随时间的变化)在很大程度上阻碍了TSF模型的性能。现有的关于时间序列中分布变化的研究大多局限于分布的量化,更重要的是,忽视了回望窗和地平线窗之间的潜在变化。为了应对上述挑战,我们系统地将TSF的分布变化归纳为两类。将回望窗作为输入空间,视界窗作为输出空间,存在(1)空间内移动,即输入空间内的分布随时间不断移动;(2)空间间移动,即分布在输入空间和输出空间之间移动。然后,我们介绍了Dish-TS,一种缓解TSF分布变化的通用神经范式。具体来说,为了更好地估计分布,我们提出了系数网(CONET),它可以是任何神经结构,将输入序列映射到可学习的分布系数。为了缓解空间内和空间间的移位,我们将Dish-TS组织成一个Dual-CONET框架,分别学习输入和输出空间的分布,自然地捕捉了两个空间的分布差异。此外,我们还为棘手的CONET学习引入了一种更有效的训练策略。最后,我们在几个数据集上进行了广泛的实验,并结合了不同的最先进的预测模型。实验结果表明,DishTS可以持续提高20%以上的效率。
论文:
Dish-TS: A General Paradigm for Alleviating Distribution Shift in
Time Series Forecasting
作者:
Wei Fan , Pengyang Wang*, Dongkun Wang, Yanjie Fu*
代码:https://github.com/weifantt/Dish-TS
在分析了大量的系列数据后,我们系统地将TSF的分布变化分为两类。考虑回看窗口(简称“回看”)作为模型的输入空间,水平窗口(简称“地平线”)作为模型的输出空间,存在(i)空间内移位:时间序列