Ax = b 矩阵与向量乘法

本文探讨了矩阵的行空间和列空间概念,通过向量x和y的线性组合,阐述了矩阵A如何将向量从R3空间映射到其列空间或行空间。理解这些空间对于解决线性方程组Ax=b至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

假设 矩阵A 是一个 3 × 3 3 \times 3 3×3 的矩阵(一般矩阵),则 A 有如下两种表述:

A = [ r 1 r 2 r 3 ] A = \begin{bmatrix} r_1\\r_2\\r_3\end{bmatrix} A=r1r2r3 A = [ c 1 c 2 c 3 ] A = \begin{bmatrix} c_1& c_2 &c_3 \end{bmatrix} A=[c1c2c3]。其中 r r r 表示行, c c c 表示列。

所以矩阵A的的行空间是 r 1 r1 r1 r 2 r2 r2 r 3 r3 r3 的线性组合,列空间是 c 1 c1 c1, c 2 c2 c2, c 3 c3 c3 的线性组合。

假设 向量 x = [ x 1 x 2 x 3 ] ∈ R 3 x = \begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix} \in \mathbb{R}^3 x=x1x2x3R3,则 A x = x 1 ∗ c 1 + x 2 ∗ c 2 + x 3 ∗ c 3 ∈ A Ax = x_1 * c_1 + x_2 * c_2 + x_3*c_3 \in A Ax=x1c1+x2c2+x3c3A的列空间。但是 向量 x x x 不一定属于 A A A 的列空间,所以 A x Ax Ax 的意思是,将 R 3 \mathbb{R}^3 R3 中的向量映射到矩阵 A A A 的列空间。所以 方程组 A x = b Ax =b Ax=b 有解的前提是, b ∈ A b \in A bA的列空间。

假设向量 y = [ y 1 y 2 y 3 ] y= \begin{bmatrix} y_1& y_2 &y_3 \end{bmatrix} y=[y1y2y3],则有 y A = y 1 ∗ r 1 + y 2 ∗ r 2 + y 3 ∗ r 3 ∈ A yA =y_1 * r_1 + y_2 * r_2 + y_3*r_3 \in A yA=y1r1+y2r2+y3r3A的行空间,所以 y A yA yA 的意思是,将 R 3 \mathbb{R}^3 R3 中的向量的转置,映射到矩阵A的行空间。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值