MIT 线性代数习题

MIT 习题课地址

0、线性代数中的几何学

Solve
2 x + y = 3 x − 2 y = − 1 \begin{aligned} 2x + y &= 3 \\ x -2y &=-1 \end{aligned} 2x+yx2y=3=1
and find out its “row picture” and “column picture”

1、核心思想概述

在这里插入图片描述

Suppose A A A is a matrix such that the complete solution to A x = [ 1 4 1 1 ] Ax=\begin{bmatrix}1\\4\\1\\1\end{bmatrix} Ax=1411 is x = [ 0 1 1 ] + c [ 0 2 1 ] x=\begin{bmatrix}0\\1\\1\end{bmatrix}+c\begin{bmatrix}0\\2\\1\end{bmatrix} x=011+c021,what can you say about columns of A A A

2、矩阵的消去法

在这里插入图片描述

Solve using the method of elimination:
x − y − z + u = 0 2 x + 2 z = 8 − y − 2 z = − 8 3 x − 3 y − 2 z + 4 u = 7 \begin{aligned} x-y-z+u&=0\\ 2x+2z&=8\\ -y-2z&=-8\\ 3x-3y-2z+4u&=7 \end{aligned} xyz+u2x+2zy2z3x3y2z+4u=0=8=8=7
3、逆矩阵

在这里插入图片描述

Find the conditions on a a a and b b b that make the matrix A invertible, and find A − 1 A^{-1} A1 when it exists.
A = [ a b b a a b a a a ] A=\begin{bmatrix}a&b&b\\a&a&b\\a&a&a\end{bmatrix} A=aaabaabba
4、LU分解

在这里插入图片描述

Find the LU-decomposition of the matrix A A A when it exists. For which real numbers a a a and b b b does it exist?
A = [ 1 0 1 a a a b b a ] A=\begin{bmatrix}1&0&1\\a&a&a\\b&b&a\end{bmatrix} A=1ab0ab1aa

5、三维空间的子空间

在这里插入图片描述

x 1 = [ 0 1 3 ] x_1=\begin{bmatrix}0\\1\\3\end{bmatrix} x1=013, x 2 = [ 2 4 0 ] x_2=\begin{bmatrix}2\\4\\0\end{bmatrix} x2=240

  • Find subspace V 1 V_1 V1 generated by x 1 x_1 x1,subspace V 2 V_2 V2 generated by x 2 x_2 x2,Describe V 1 ∩ V 2 V_1 \cap V_2 V1V2
  • Find subspace V 3 V_3 V3 generated by [ x 1 x 2 ] \begin{bmatrix}x_1&x_2 \end{bmatrix} [x1x2], Is V 3 V_3 V3 equal to V 1 ∪ V 2 V_1\cup V_2 V1V2? Find a subspace S S S of V 3 V_3 V3 such that x 1 ∉ S , x 2 ∉ S x_1 \notin S, x_2 \notin S x1/S,x2/S.
  • What is V 3 ∩ { x y p l a n e } V_3 \cap \{xy\mathbb{ plane}\} V3{xyplane} ?

6、向量子空间

在这里插入图片描述

Which are subspaces of R 3 = { [ l 1 l 2 l 3 ] } \mathbb{R}^3 = \{\begin{bmatrix} l_1\\l_2\\l_3\end{bmatrix}\} R3={l1l2l3}

  1. l 1 + l 2 − l 3 = 0 l_1+l_2-l_3=0 l1+l2l3=0

  2. l 1 l 2 − l 3 = 0 l_1l_2-l_3=0 l1l2l3=0

  3. [ l 1 l 2 l 3 ] = [ 1 0 0 ] + c 1 [ 1 0 − 1 ] + c 2 [ 1 0 1 ] \begin{bmatrix} l_1\\l_2\\l_3\end{bmatrix}=\begin{bmatrix} 1\\0\\0\end{bmatrix}+c_1\begin{bmatrix} 1\\0\\-1\end{bmatrix}+c_2\begin{bmatrix} 1\\0\\1\end{bmatrix} l1l2l3=100+c1101+c2101

  4. [ l 1 l 2 l 3 ] = [ 0 1 0 ] + c 1 [ 1 0 − 1 ] + c 2 [ 1 0 1 ] \begin{bmatrix} l_1\\l_2\\l_3\end{bmatrix}=\begin{bmatrix} 0\\1\\0\end{bmatrix}+c_1\begin{bmatrix} 1\\0\\-1\end{bmatrix}+c_2\begin{bmatrix} 1\\0\\1\end{bmatrix} l1l2l3=010+c1101+c2101

7、解 A x = 0 Ax=0 Ax=0

在这里插入图片描述

The set S S S of points P ( x , y , z ) P(x,y,z) P(x,y,z) such that x − 5 y + 2 z = 9 x-5y+2z=9 x5y+2z=9 is a ____ in R 3 \mathbb{R}^3 R3. It is ____ to the ____ S 0 S_0 S0 of P ( x , y , z ) P(x,y,z) P(x,y,z) such that x − 5 y + 2 z = 0 x-5y+2z=0 x5y+2z=0

8、解 A x = b Ax=b Ax=b

在这里插入图片描述

Find all solutions, depending on b 1 b_1 b1 b 2 b_2 b2 b 3 b_3 b3
x − 2 y − 2 z = b 1 2 x − 5 y − 4 z = b 2 4 x − 9 y − 8 z = b 3 \begin{aligned} x-2y-2z&=b_1\\ 2x-5y-4z&=b_2 \\ 4x-9y-8z&=b_3 \end{aligned} x2y2z2x5y4z4x9y8z=b1=b2=b3
9、向量空间的基底与维数

在这里插入图片描述

Find the dimension of the vector space spanned by the following vectors
[ 1 1 − 2 0 − 1 ] [ 1 2 0 − 4 1 ] [ 0 1 3 − 3 2 ] [ 2 3 0 − 2 0 ] \begin{bmatrix}1&1&-2&0&-1\end{bmatrix}\\ \begin{bmatrix}1&2&0&-4&1\end{bmatrix}\\ \begin{bmatrix}0&1&3&-3&2\end{bmatrix}\\ \begin{bmatrix}2&3&0&-2&0\end{bmatrix} [11201][12041][01332][23020]
and find a basis for that space.

10、四个基本子空间的计算

在这里插入图片描述

Suppose B = [ 1 2 1 − 1 0 1 ] B=\begin{bmatrix}1&&\\2&1\\-1&0&1\end{bmatrix} B=121101 [ 5 0 3 0 1 1 0 0 0 ] \begin{bmatrix}5&0&3\\0&1&1\\0&0&0\end{bmatrix} 500010310

Find a basis for and compute the dimension of each of the 4 fundamental subspaces of B B B.

11、矩阵的空间

在这里插入图片描述

Show that the set of 2 × 3 2 \times 3 2×3 matrices whose null space contains [ 2 1 1 ] \begin{bmatrix}2\\1\\1\end{bmatrix} 211 is a vector subspace, and find a basis for it. What about the set of those whose column space contains [ 2 1 ] \begin{bmatrix}2\\1\end{bmatrix} [21].

12、测验题目讲解1

在这里插入图片描述

A = [ 1 1 1 1 2 3 3 4 k ] A=\begin{bmatrix}1&1&1\\1&2&3\\3&4&k\end{bmatrix} A=11312413k

a) For which k k k does A x = [ 2 3 7 ] Ax=\begin{bmatrix}2\\3\\7\end{bmatrix} Ax=237 have a unique solution

b) Which k k k, does A x Ax Ax has infinitely many solution.

c) When k = 4 k=4 k=4, find LU decomposition.

d) For all k k k, find complete solution.

13、图像与网络

在这里插入图片描述

在这里插入图片描述

  • Find incidence matrix A A A

  • N ( A ) N(A) N(A), N ( A T ) N(A^T) N(AT)

  • T r ( A T A ) \mathbb{Tr}(A^TA) Tr(ATA)

14、正交向量和子空间

在这里插入图片描述

S S S is spanned by [ 1 2 2 3 ] \begin{bmatrix}1&2&2&3\end{bmatrix} [1223] and [ 1 3 3 2 ] \begin{bmatrix}1&3&3&2\end{bmatrix} [1332].

  1. Find a basis for S ⊥ S^{\perp} S

  2. Can every v v v in R 4 \mathbb{R}^4 R4 be written uniquely in terms of S S S and $S^{\perp} $

15、子空间上的投影

在这里插入图片描述

Find the orthogonal projection matrix onto the plane: x + y − z = 0 x+y-z=0 x+yz=0

16、最小二乘逼近

在这里插入图片描述

Find the quadratic equation through the origin that is a best fit for the points ( 1 , 1 ) , ( 2 , 5 ) , ( − 1 , − 2 ) (1,1), (2,5),(-1,-2) (1,1),(2,5),(1,2)

17、Gram-Schmidt 正交化

在这里插入图片描述

Find q 1 , q 2 , q 3 q_1,q_2,q_3 q1,q2,q3( orthogonal) from columns of A A A. Then write A A A as Q R QR QR ( Q Q Q orthogonal, R R R upper triangular)

A = [ 1 2 4 0 0 5 0 3 6 ] A=\begin{bmatrix}1&2&4\\0&0&5\\0&3&6\end{bmatrix} A=100203456

18、行列式的性质

在这里插入图片描述

Find the determinants of

A = [ 101 201 301 102 202 302 103 203 303 ] A=\begin{bmatrix}101&201&301\\102&202&302\\103&203&303\end{bmatrix} A=101102103201202203301302303

B = [ 1 a a 2 1 b b 2 1 c c 2 ] B=\begin{bmatrix}1&a&a^2\\1&b&b^2\\1&c&c^2\end{bmatrix} B=111abca2b2c2

C = [ 1 2 3 ] [ 1 − 4 5 ] C=\begin{bmatrix}1\\2\\3 \end{bmatrix}\begin{bmatrix}1&-4&5 \end{bmatrix} C=123[145]

D = [ 0 1 3 − 1 0 4 − 3 − 4 0 ] D=\begin{bmatrix}0&1&3\\-1&0&4\\-3&-4&0\end{bmatrix} D=013104340

19、行列式

在这里插入图片描述

Find the determinants of

A = [ x y 0 0 0 0 x y 0 0 0 0 x y 0 0 0 0 x y y 0 0 0 x ] A=\begin{bmatrix}x&y&0&0&0\\0&x&y&0&0\\0&0&x&y&0\\0&0&0&x&y\\y&0&0&0&x\end{bmatrix} A=x000yyx0000yx0000yx0000yx

B = [ x y y y y y x y y y y y x y y y y y x y y y y y x ] B=\begin{bmatrix}x&y&y&y&y\\y&x&y&y&y\\y&y&x&y&y\\y&y&y&x&y\\y&y&y&y&x\end{bmatrix} B=xyyyyyxyyyyyxyyyyyxyyyyyx

Hint: You may combine two of the methods: (1) Elimination (2) ∑ ± a 1 α a 2 β a 3 γ \sum\pm a_{1\alpha}a_{2\beta}a_{3\gamma} ±a1αa2βa3γ (3) By cofactors

20、行列式与体积

在这里插入图片描述

T T T is a tetrahedron with vertex O ( 0 , 0 , 0 ) , A 1 ( 2 , 2 , − 1 ) , A 2 ( 1 , 3 , 0 ) , A 3 ( − 1 , 1 , 4 ) O(0,0,0), A_1(2,2,-1),A_2(1,3,0),A_3(-1,1,4) O(0,0,0),A1(2,2,1),A2(1,3,0),A3(1,1,4), Compute Vol(T). If A 1 A_1 A1, A 2 A_2 A2 are fixed, but A 3 A_3 A3 is moved to A 3 ′ ( − 201 , − 199 , 104 ) A_3^{'}(-201,-199,104) A3(201,199,104), compute Vol(T) again.

21、特征值和特征向量

在这里插入图片描述

Given the invertible A = [ 1 2 3 0 1 − 2 0 1 4 ] A=\begin{bmatrix}1&2&3\\0&1&-2\\0&1&4\end{bmatrix} A=100211324, find the eigenvalues and eigenvectors of A 2 A^2 A2, A − 1 − I A^{-1}-I A1I

22、矩阵的方幂

在这里插入图片描述

Find a formula for C k C^k Ck where C = [ 2 b − a a − b 2 b − 2 a 2 a − b ] C=\begin{bmatrix}2b-a&a-b \\2b-2a&2a-b\end{bmatrix} C=[2ba2b2aab2ab], calculate C 100 C^{100} C100 when a = b = − 1 a=b=-1 a=b=1

23、微分方程与exp(At)

在这里插入图片描述

Solve the differential equation y ′ ′ ′ + 2 y ′ ′ − y ′ − 2 y = 0 y^{'''}+2y^{''}-y^{'}-2y=0 y+2yy2y=0 for the general solution. What is the matrix A A A. Find the first column of exp( A t At At)

24、马尔科夫矩阵

在这里插入图片描述

A particle jumps between positions A and B with the following probabilities.
在这里插入图片描述
If it starts at A, what is the probability it is at A and B after i) 1 step ii) n steps iii) ∞ \infin steps

25、测验题目讲解2
在这里插入图片描述
A = [ 1 2 3 4 5 6 7 8 0 0 9 10 0 0 11 12 ] A=\begin{bmatrix}1&2&3&4\\5&6&7&8\\0&0&9&10\\0&0&11&12\end{bmatrix} A=1500260037911481012

  1. Find all the non-zero terms in the big formula d e t A = ∑ ± a 1 α a 2 β a 3 γ a 4 δ \mathbb{det}A=\sum\pm a_{1\alpha}a_{2\beta}a_{3\gamma}a_{4\delta} detA=±a1αa2βa3γa4δ and compute $\mathbb{det}A $
  2. Find cofactors C 11 C_{11} C11, C 12 C_{12} C12, C 13 C_{13} C13 and C 14 C_{14} C14
  3. Find column 1 of A − 1 A^{-1} A1

26、对称矩阵与正定矩阵

在这里插入图片描述
Explain why each of the following is true.

a) Every positive definite matrix is invertible

b) The only positive definite projection matrix is P = I P = I P=I

c) D is diagonal with positive entries is positive definite

d) S S S symmetric with d e t S > 0 \mathbb{det}S>0 detS>0 might not be positive definite

27、复矩阵
在这里插入图片描述

Diagonalize A A A by constructing its eigenvalue matrix Λ \Lambda Λ and eigenvector matrix S S S

A = [ 2 1 − i 1 + i 3 ] = A ˉ T = A H A=\begin{bmatrix}2&1-i\\1+i&3\end{bmatrix}=\bar{A}^T=A^H A=[21+i1i3]=AˉT=AH

28、正定矩阵与极小值
在这里插入图片描述
For which values of c is
B = [ 2 − 1 − 1 − 1 2 − 1 − 1 − 1 2 + c ] B=\begin{bmatrix}2&-1&-1\\-1&2&-1\\-1&-1&2+c\end{bmatrix} B=211121112+c

  • positive definite?
  • positive semidefinite?

29、相似矩阵

在这里插入图片描述

Which of the following statements are true? Explain

(a) If A A A and B B B are similar matrices, then 2 A 3 + A − 3 I 2A^3+A-3I 2A3+A3I and 2 B 3 + B − 3 I 2B^3+B-3I 2B3+B3I are similar

(b) If A A A and B B B are 3 × 3 3 \times 3 3×3 matrices with eigenvalues 1,0,-1, then A A A and B B B are similar.

© The matrices J 1 = [ − 1 1 0 0 − 1 1 0 0 − 1 ] J_1=\begin{bmatrix}-1&1&0\\0&-1&1\\0&0&-1\end{bmatrix} J1=100110011 and J 2 = [ − 1 1 0 0 − 1 0 0 0 − 1 ] J_2=\begin{bmatrix}-1&1&0\\0&-1&0\\0&0&-1\end{bmatrix} J2=100110001 are similar

30、奇异值分解的运算

在这里插入图片描述

Find the singular value decomposition of the matrix C = [ 5 5 − 1 7 ] C=\begin{bmatrix}5&5\\-1&7\end{bmatrix} C=[5157]

31、线性变换

在这里插入图片描述

Let T ( A ) = A T T(A)=A^T T(A)=AT, A A A is 2 × 2 2 \times 2 2×2

  1. why is T linear? What is T^{-1}?

  2. Write down the matrix of T in

v 1 = [ 1 0 0 0 ] v_1=\begin{bmatrix}1&0\\0&0\end{bmatrix} v1=[1000], v 2 = [ 0 1 0 0 ] v_2=\begin{bmatrix}0&1\\0&0\end{bmatrix} v2=[0010], v 3 = [ 0 0 1 0 ] v_3=\begin{bmatrix}0&0\\1&0\end{bmatrix} v3=[0100], v 4 = [ 0 0 0 1 ] v_4=\begin{bmatrix}0&0\\0&1\end{bmatrix} v4=[0001]

w 1 = [ 1 0 1 0 ] w_1=\begin{bmatrix}1&0\\1&0\end{bmatrix} w1=[1100], v 2 = [ 0 0 0 1 ] v_2=\begin{bmatrix}0&0\\0&1\end{bmatrix} v2=[0001], v 3 = [ 0 1 1 0 ] v_3=\begin{bmatrix}0&1\\1&0\end{bmatrix} v3=[0110], v 4 = [ 0 1 − 1 0 ] v_4=\begin{bmatrix}0&1\\-1&0\end{bmatrix} v4=[0110]

3) Eigenvalues / eigenvectors of T?

32、基的变换

在这里插入图片描述

the vector space of all polynomials in x of degree ≤ 2 \leq 2 2 has a basis 1 , x , x 2 1,x,x^2 1,x,x2. Let ω 1 , ω 2 , ω 3 \omega_1,\omega_2,\omega_3 ω1,ω2,ω3 be a different basis of polynomials whose values at x = -1,-,1 are given by:

a) Express y ( x ) = − x + 5 y(x)=-x+5 y(x)=x+5 in this basis

b) Find the change of basis matrices ( 1 1 1, x x x, x 2 x^2 x2) ↔ ( w 1 , w 2 , w 3 ) \leftrightarrow (w_1,w_2,w_3) (w1,w2,w3)

c) Find the matrix of taking derivatives in both basis

33、广义逆

在这里插入图片描述

Given A = [ 1 2 ] A=\begin{bmatrix}1&2\end{bmatrix} A=[12]

i) What is A + A^+ A+(pseudoinverse)

ii) A A + AA^+ AA+ and A + A A^+A A+A

iii) If x x x is in N ( A ) N(A) N(A), what is A + A x A^+Ax A+Ax

iv) If x x x is in C ( A T ) C(A^T) C(AT), what is A + A x A^+Ax A+Ax

34、测验题目讲解3

在这里插入图片描述

Find the eigenvalues and eigenvectors of the following

i) Projection P = a a T a T a P=\frac{aa^T}{a^Ta} P=aTaaaT, a = [ 3 4 ] a=\begin{bmatrix}3\\4\end{bmatrix} a=[34]

ii) Q = [ 0.6 − 0.8 0.8 0.6 ] Q=\begin{bmatrix}0.6&-0.8\\0.8&0.6\end{bmatrix} Q=[0.60.80.80.6]

iii) R = 2 P − I R=2P-I R=2PI

35、期末考试题讲解

在这里插入图片描述

A = [ 1 0 1 0 1 1 1 1 0 ] A=\begin{bmatrix}1&0&1\\0&1&1\\1&1&0\end{bmatrix} A=101011110. Two eigenvalues: λ 1 = 1 \lambda_1=1 λ1=1, λ 2 = 2 \lambda_2=2 λ2=2, First two pivots: d 1 = d 2 = 1 d_1=d_2=1 d1=d2=1

(a) Find λ 3 \lambda_3 λ3 and d 3 d_3 d3

(b) What is the smallest a 33 a_{33} a33 that would make A A A positive semidefinite? What is the smallest c that A + c I A+cI A+cI is positive semi-definite?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值