0、线性代数中的几何学
Solve
2
x
+
y
=
3
x
−
2
y
=
−
1
\begin{aligned} 2x + y &= 3 \\ x -2y &=-1 \end{aligned}
2x+yx−2y=3=−1
and find out its “row picture” and “column picture”
1、核心思想概述
Suppose A A A is a matrix such that the complete solution to A x = [ 1 4 1 1 ] Ax=\begin{bmatrix}1\\4\\1\\1\end{bmatrix} Ax=⎣⎢⎢⎡1411⎦⎥⎥⎤ is x = [ 0 1 1 ] + c [ 0 2 1 ] x=\begin{bmatrix}0\\1\\1\end{bmatrix}+c\begin{bmatrix}0\\2\\1\end{bmatrix} x=⎣⎡011⎦⎤+c⎣⎡021⎦⎤,what can you say about columns of A A A?
2、矩阵的消去法
Solve using the method of elimination:
x
−
y
−
z
+
u
=
0
2
x
+
2
z
=
8
−
y
−
2
z
=
−
8
3
x
−
3
y
−
2
z
+
4
u
=
7
\begin{aligned} x-y-z+u&=0\\ 2x+2z&=8\\ -y-2z&=-8\\ 3x-3y-2z+4u&=7 \end{aligned}
x−y−z+u2x+2z−y−2z3x−3y−2z+4u=0=8=−8=7
3、逆矩阵
Find the conditions on
a
a
a and
b
b
b that make the matrix A invertible, and find
A
−
1
A^{-1}
A−1 when it exists.
A
=
[
a
b
b
a
a
b
a
a
a
]
A=\begin{bmatrix}a&b&b\\a&a&b\\a&a&a\end{bmatrix}
A=⎣⎡aaabaabba⎦⎤
4、LU分解
Find the LU-decomposition of the matrix
A
A
A when it exists. For which real numbers
a
a
a and
b
b
b does it exist?
A
=
[
1
0
1
a
a
a
b
b
a
]
A=\begin{bmatrix}1&0&1\\a&a&a\\b&b&a\end{bmatrix}
A=⎣⎡1ab0ab1aa⎦⎤
5、三维空间的子空间
x 1 = [ 0 1 3 ] x_1=\begin{bmatrix}0\\1\\3\end{bmatrix} x1=⎣⎡013⎦⎤, x 2 = [ 2 4 0 ] x_2=\begin{bmatrix}2\\4\\0\end{bmatrix} x2=⎣⎡240⎦⎤
- Find subspace V 1 V_1 V1 generated by x 1 x_1 x1,subspace V 2 V_2 V2 generated by x 2 x_2 x2,Describe V 1 ∩ V 2 V_1 \cap V_2 V1∩V2
- Find subspace V 3 V_3 V3 generated by [ x 1 x 2 ] \begin{bmatrix}x_1&x_2 \end{bmatrix} [x1x2], Is V 3 V_3 V3 equal to V 1 ∪ V 2 V_1\cup V_2 V1∪V2? Find a subspace S S S of V 3 V_3 V3 such that x 1 ∉ S , x 2 ∉ S x_1 \notin S, x_2 \notin S x1∈/S,x2∈/S.
- What is V 3 ∩ { x y p l a n e } V_3 \cap \{xy\mathbb{ plane}\} V3∩{xyplane} ?
6、向量子空间
Which are subspaces of R 3 = { [ l 1 l 2 l 3 ] } \mathbb{R}^3 = \{\begin{bmatrix} l_1\\l_2\\l_3\end{bmatrix}\} R3={⎣⎡l1l2l3⎦⎤}
-
l 1 + l 2 − l 3 = 0 l_1+l_2-l_3=0 l1+l2−l3=0
-
l 1 l 2 − l 3 = 0 l_1l_2-l_3=0 l1l2−l3=0
-
[ l 1 l 2 l 3 ] = [ 1 0 0 ] + c 1 [ 1 0 − 1 ] + c 2 [ 1 0 1 ] \begin{bmatrix} l_1\\l_2\\l_3\end{bmatrix}=\begin{bmatrix} 1\\0\\0\end{bmatrix}+c_1\begin{bmatrix} 1\\0\\-1\end{bmatrix}+c_2\begin{bmatrix} 1\\0\\1\end{bmatrix} ⎣⎡l1l2l3⎦⎤=⎣⎡100⎦⎤+c1⎣⎡10−1⎦⎤+c2⎣⎡101⎦⎤
-
[ l 1 l 2 l 3 ] = [ 0 1 0 ] + c 1 [ 1 0 − 1 ] + c 2 [ 1 0 1 ] \begin{bmatrix} l_1\\l_2\\l_3\end{bmatrix}=\begin{bmatrix} 0\\1\\0\end{bmatrix}+c_1\begin{bmatrix} 1\\0\\-1\end{bmatrix}+c_2\begin{bmatrix} 1\\0\\1\end{bmatrix} ⎣⎡l1l2l3⎦⎤=⎣⎡010⎦⎤+c1⎣⎡10−1⎦⎤+c2⎣⎡101⎦⎤
7、解 A x = 0 Ax=0 Ax=0
The set S S S of points P ( x , y , z ) P(x,y,z) P(x,y,z) such that x − 5 y + 2 z = 9 x-5y+2z=9 x−5y+2z=9 is a ____ in R 3 \mathbb{R}^3 R3. It is ____ to the ____ S 0 S_0 S0 of P ( x , y , z ) P(x,y,z) P(x,y,z) such that x − 5 y + 2 z = 0 x-5y+2z=0 x−5y+2z=0
8、解 A x = b Ax=b Ax=b
Find all solutions, depending on
b
1
b_1
b1,
b
2
b_2
b2,
b
3
b_3
b3:
x
−
2
y
−
2
z
=
b
1
2
x
−
5
y
−
4
z
=
b
2
4
x
−
9
y
−
8
z
=
b
3
\begin{aligned} x-2y-2z&=b_1\\ 2x-5y-4z&=b_2 \\ 4x-9y-8z&=b_3 \end{aligned}
x−2y−2z2x−5y−4z4x−9y−8z=b1=b2=b3
9、向量空间的基底与维数
Find the dimension of the vector space spanned by the following vectors
[
1
1
−
2
0
−
1
]
[
1
2
0
−
4
1
]
[
0
1
3
−
3
2
]
[
2
3
0
−
2
0
]
\begin{bmatrix}1&1&-2&0&-1\end{bmatrix}\\ \begin{bmatrix}1&2&0&-4&1\end{bmatrix}\\ \begin{bmatrix}0&1&3&-3&2\end{bmatrix}\\ \begin{bmatrix}2&3&0&-2&0\end{bmatrix}
[11−20−1][120−41][013−32][230−20]
and find a basis for that space.
10、四个基本子空间的计算
Suppose B = [ 1 2 1 − 1 0 1 ] B=\begin{bmatrix}1&&\\2&1\\-1&0&1\end{bmatrix} B=⎣⎡12−1101⎦⎤ [ 5 0 3 0 1 1 0 0 0 ] \begin{bmatrix}5&0&3\\0&1&1\\0&0&0\end{bmatrix} ⎣⎡500010310⎦⎤
Find a basis for and compute the dimension of each of the 4 fundamental subspaces of B B B.
11、矩阵的空间
Show that the set of 2 × 3 2 \times 3 2×3 matrices whose null space contains [ 2 1 1 ] \begin{bmatrix}2\\1\\1\end{bmatrix} ⎣⎡211⎦⎤ is a vector subspace, and find a basis for it. What about the set of those whose column space contains [ 2 1 ] \begin{bmatrix}2\\1\end{bmatrix} [21].
12、测验题目讲解1
A = [ 1 1 1 1 2 3 3 4 k ] A=\begin{bmatrix}1&1&1\\1&2&3\\3&4&k\end{bmatrix} A=⎣⎡11312413k⎦⎤
a) For which k k k does A x = [ 2 3 7 ] Ax=\begin{bmatrix}2\\3\\7\end{bmatrix} Ax=⎣⎡237⎦⎤ have a unique solution
b) Which k k k, does A x Ax Ax has infinitely many solution.
c) When k = 4 k=4 k=4, find LU decomposition.
d) For all k k k, find complete solution.
13、图像与网络
-
Find incidence matrix A A A
-
N ( A ) N(A) N(A), N ( A T ) N(A^T) N(AT)
-
T r ( A T A ) \mathbb{Tr}(A^TA) Tr(ATA)
14、正交向量和子空间
S S S is spanned by [ 1 2 2 3 ] \begin{bmatrix}1&2&2&3\end{bmatrix} [1223] and [ 1 3 3 2 ] \begin{bmatrix}1&3&3&2\end{bmatrix} [1332].
-
Find a basis for S ⊥ S^{\perp} S⊥
-
Can every v v v in R 4 \mathbb{R}^4 R4 be written uniquely in terms of S S S and $S^{\perp} $
15、子空间上的投影
Find the orthogonal projection matrix onto the plane: x + y − z = 0 x+y-z=0 x+y−z=0
16、最小二乘逼近
Find the quadratic equation through the origin that is a best fit for the points ( 1 , 1 ) , ( 2 , 5 ) , ( − 1 , − 2 ) (1,1), (2,5),(-1,-2) (1,1),(2,5),(−1,−2)
17、Gram-Schmidt 正交化
Find q 1 , q 2 , q 3 q_1,q_2,q_3 q1,q2,q3( orthogonal) from columns of A A A. Then write A A A as Q R QR QR ( Q Q Q orthogonal, R R R upper triangular)
A = [ 1 2 4 0 0 5 0 3 6 ] A=\begin{bmatrix}1&2&4\\0&0&5\\0&3&6\end{bmatrix} A=⎣⎡100203456⎦⎤
18、行列式的性质
Find the determinants of
A = [ 101 201 301 102 202 302 103 203 303 ] A=\begin{bmatrix}101&201&301\\102&202&302\\103&203&303\end{bmatrix} A=⎣⎡101102103201202203301302303⎦⎤
B = [ 1 a a 2 1 b b 2 1 c c 2 ] B=\begin{bmatrix}1&a&a^2\\1&b&b^2\\1&c&c^2\end{bmatrix} B=⎣⎡111abca2b2c2⎦⎤
C = [ 1 2 3 ] [ 1 − 4 5 ] C=\begin{bmatrix}1\\2\\3 \end{bmatrix}\begin{bmatrix}1&-4&5 \end{bmatrix} C=⎣⎡123⎦⎤[1−45]
D = [ 0 1 3 − 1 0 4 − 3 − 4 0 ] D=\begin{bmatrix}0&1&3\\-1&0&4\\-3&-4&0\end{bmatrix} D=⎣⎡0−1−310−4340⎦⎤
19、行列式
Find the determinants of
A = [ x y 0 0 0 0 x y 0 0 0 0 x y 0 0 0 0 x y y 0 0 0 x ] A=\begin{bmatrix}x&y&0&0&0\\0&x&y&0&0\\0&0&x&y&0\\0&0&0&x&y\\y&0&0&0&x\end{bmatrix} A=⎣⎢⎢⎢⎢⎡x000yyx0000yx0000yx0000yx⎦⎥⎥⎥⎥⎤
B = [ x y y y y y x y y y y y x y y y y y x y y y y y x ] B=\begin{bmatrix}x&y&y&y&y\\y&x&y&y&y\\y&y&x&y&y\\y&y&y&x&y\\y&y&y&y&x\end{bmatrix} B=⎣⎢⎢⎢⎢⎡xyyyyyxyyyyyxyyyyyxyyyyyx⎦⎥⎥⎥⎥⎤
Hint: You may combine two of the methods: (1) Elimination (2) ∑ ± a 1 α a 2 β a 3 γ \sum\pm a_{1\alpha}a_{2\beta}a_{3\gamma} ∑±a1αa2βa3γ (3) By cofactors
20、行列式与体积
T T T is a tetrahedron with vertex O ( 0 , 0 , 0 ) , A 1 ( 2 , 2 , − 1 ) , A 2 ( 1 , 3 , 0 ) , A 3 ( − 1 , 1 , 4 ) O(0,0,0), A_1(2,2,-1),A_2(1,3,0),A_3(-1,1,4) O(0,0,0),A1(2,2,−1),A2(1,3,0),A3(−1,1,4), Compute Vol(T). If A 1 A_1 A1, A 2 A_2 A2 are fixed, but A 3 A_3 A3 is moved to A 3 ′ ( − 201 , − 199 , 104 ) A_3^{'}(-201,-199,104) A3′(−201,−199,104), compute Vol(T) again.
21、特征值和特征向量
Given the invertible A = [ 1 2 3 0 1 − 2 0 1 4 ] A=\begin{bmatrix}1&2&3\\0&1&-2\\0&1&4\end{bmatrix} A=⎣⎡1002113−24⎦⎤, find the eigenvalues and eigenvectors of A 2 A^2 A2, A − 1 − I A^{-1}-I A−1−I
22、矩阵的方幂
Find a formula for C k C^k Ck where C = [ 2 b − a a − b 2 b − 2 a 2 a − b ] C=\begin{bmatrix}2b-a&a-b \\2b-2a&2a-b\end{bmatrix} C=[2b−a2b−2aa−b2a−b], calculate C 100 C^{100} C100 when a = b = − 1 a=b=-1 a=b=−1
23、微分方程与exp(At)
Solve the differential equation y ′ ′ ′ + 2 y ′ ′ − y ′ − 2 y = 0 y^{'''}+2y^{''}-y^{'}-2y=0 y′′′+2y′′−y′−2y=0 for the general solution. What is the matrix A A A. Find the first column of exp( A t At At)
24、马尔科夫矩阵
A particle jumps between positions A and B with the following probabilities.
If it starts at A, what is the probability it is at A and B after i) 1 step ii) n steps iii)
∞
\infin
∞ steps
25、测验题目讲解2
A
=
[
1
2
3
4
5
6
7
8
0
0
9
10
0
0
11
12
]
A=\begin{bmatrix}1&2&3&4\\5&6&7&8\\0&0&9&10\\0&0&11&12\end{bmatrix}
A=⎣⎢⎢⎡1500260037911481012⎦⎥⎥⎤
- Find all the non-zero terms in the big formula d e t A = ∑ ± a 1 α a 2 β a 3 γ a 4 δ \mathbb{det}A=\sum\pm a_{1\alpha}a_{2\beta}a_{3\gamma}a_{4\delta} detA=∑±a1αa2βa3γa4δ and compute $\mathbb{det}A $
- Find cofactors C 11 C_{11} C11, C 12 C_{12} C12, C 13 C_{13} C13 and C 14 C_{14} C14
- Find column 1 of A − 1 A^{-1} A−1
26、对称矩阵与正定矩阵
Explain why each of the following is true.
a) Every positive definite matrix is invertible
b) The only positive definite projection matrix is P = I P = I P=I
c) D is diagonal with positive entries is positive definite
d) S S S symmetric with d e t S > 0 \mathbb{det}S>0 detS>0 might not be positive definite
27、复矩阵
Diagonalize A A A by constructing its eigenvalue matrix Λ \Lambda Λ and eigenvector matrix S S S
A = [ 2 1 − i 1 + i 3 ] = A ˉ T = A H A=\begin{bmatrix}2&1-i\\1+i&3\end{bmatrix}=\bar{A}^T=A^H A=[21+i1−i3]=AˉT=AH
28、正定矩阵与极小值
For which values of c is
B
=
[
2
−
1
−
1
−
1
2
−
1
−
1
−
1
2
+
c
]
B=\begin{bmatrix}2&-1&-1\\-1&2&-1\\-1&-1&2+c\end{bmatrix}
B=⎣⎡2−1−1−12−1−1−12+c⎦⎤
- positive definite?
- positive semidefinite?
29、相似矩阵
Which of the following statements are true? Explain
(a) If A A A and B B B are similar matrices, then 2 A 3 + A − 3 I 2A^3+A-3I 2A3+A−3I and 2 B 3 + B − 3 I 2B^3+B-3I 2B3+B−3I are similar
(b) If A A A and B B B are 3 × 3 3 \times 3 3×3 matrices with eigenvalues 1,0,-1, then A A A and B B B are similar.
© The matrices J 1 = [ − 1 1 0 0 − 1 1 0 0 − 1 ] J_1=\begin{bmatrix}-1&1&0\\0&-1&1\\0&0&-1\end{bmatrix} J1=⎣⎡−1001−1001−1⎦⎤ and J 2 = [ − 1 1 0 0 − 1 0 0 0 − 1 ] J_2=\begin{bmatrix}-1&1&0\\0&-1&0\\0&0&-1\end{bmatrix} J2=⎣⎡−1001−1000−1⎦⎤ are similar
30、奇异值分解的运算
Find the singular value decomposition of the matrix C = [ 5 5 − 1 7 ] C=\begin{bmatrix}5&5\\-1&7\end{bmatrix} C=[5−157]
31、线性变换
Let T ( A ) = A T T(A)=A^T T(A)=AT, A A A is 2 × 2 2 \times 2 2×2
-
why is T linear? What is T^{-1}?
-
Write down the matrix of T in
v 1 = [ 1 0 0 0 ] v_1=\begin{bmatrix}1&0\\0&0\end{bmatrix} v1=[1000], v 2 = [ 0 1 0 0 ] v_2=\begin{bmatrix}0&1\\0&0\end{bmatrix} v2=[0010], v 3 = [ 0 0 1 0 ] v_3=\begin{bmatrix}0&0\\1&0\end{bmatrix} v3=[0100], v 4 = [ 0 0 0 1 ] v_4=\begin{bmatrix}0&0\\0&1\end{bmatrix} v4=[0001]
w 1 = [ 1 0 1 0 ] w_1=\begin{bmatrix}1&0\\1&0\end{bmatrix} w1=[1100], v 2 = [ 0 0 0 1 ] v_2=\begin{bmatrix}0&0\\0&1\end{bmatrix} v2=[0001], v 3 = [ 0 1 1 0 ] v_3=\begin{bmatrix}0&1\\1&0\end{bmatrix} v3=[0110], v 4 = [ 0 1 − 1 0 ] v_4=\begin{bmatrix}0&1\\-1&0\end{bmatrix} v4=[0−110]
3) Eigenvalues / eigenvectors of T?
32、基的变换
the vector space of all polynomials in x of degree ≤ 2 \leq 2 ≤2 has a basis 1 , x , x 2 1,x,x^2 1,x,x2. Let ω 1 , ω 2 , ω 3 \omega_1,\omega_2,\omega_3 ω1,ω2,ω3 be a different basis of polynomials whose values at x = -1,-,1 are given by:
a) Express y ( x ) = − x + 5 y(x)=-x+5 y(x)=−x+5 in this basis
b) Find the change of basis matrices ( 1 1 1, x x x, x 2 x^2 x2) ↔ ( w 1 , w 2 , w 3 ) \leftrightarrow (w_1,w_2,w_3) ↔(w1,w2,w3)
c) Find the matrix of taking derivatives in both basis
33、广义逆
Given A = [ 1 2 ] A=\begin{bmatrix}1&2\end{bmatrix} A=[12]
i) What is A + A^+ A+(pseudoinverse)
ii) A A + AA^+ AA+ and A + A A^+A A+A
iii) If x x x is in N ( A ) N(A) N(A), what is A + A x A^+Ax A+Ax
iv) If x x x is in C ( A T ) C(A^T) C(AT), what is A + A x A^+Ax A+Ax
34、测验题目讲解3
Find the eigenvalues and eigenvectors of the following
i) Projection P = a a T a T a P=\frac{aa^T}{a^Ta} P=aTaaaT, a = [ 3 4 ] a=\begin{bmatrix}3\\4\end{bmatrix} a=[34]
ii) Q = [ 0.6 − 0.8 0.8 0.6 ] Q=\begin{bmatrix}0.6&-0.8\\0.8&0.6\end{bmatrix} Q=[0.60.8−0.80.6]
iii) R = 2 P − I R=2P-I R=2P−I
35、期末考试题讲解
A = [ 1 0 1 0 1 1 1 1 0 ] A=\begin{bmatrix}1&0&1\\0&1&1\\1&1&0\end{bmatrix} A=⎣⎡101011110⎦⎤. Two eigenvalues: λ 1 = 1 \lambda_1=1 λ1=1, λ 2 = 2 \lambda_2=2 λ2=2, First two pivots: d 1 = d 2 = 1 d_1=d_2=1 d1=d2=1
(a) Find λ 3 \lambda_3 λ3 and d 3 d_3 d3
(b) What is the smallest a 33 a_{33} a33 that would make A A A positive semidefinite? What is the smallest c that A + c I A+cI A+cI is positive semi-definite?