统计学简介之一——统计量

统计量是基于样本数据构造的、不依赖未知参数的函数,用于估计总体特征。在无法获取全部数据时,通过抽样并计算统计量,能有效估计总体属性。统计量在实际应用中扮演重要角色,为样本特征推断总体特性提供理论依据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

统计学简介之一——统计量


一、什么是统计量?

   X1,X2,,Xn 是从总体 X 中抽取的容量为n的一个样本,如果由此样本构造一个函数T(X1,X2,,Xn)不依赖于任何未知参数,则称函数 T(X1,X2,,Xn) 是一个统计量
  通常,又称 T(X1,X2,,Xn) 为样本统计量。当获取样本的一组具体观测值 x1,x2,,xn 时,代入T,计算出 T(X1,X2,,Xn) 的数值,就获得了一个具体的统计量值
这里写图片描述

二、为什么要用统计量?

  在许多实际应用中,想要获取全部数据是不可能或者工作量巨大的,例如获取某城市全体居民的家庭收入信息。这样就需要随机抽取部分样本,用样本特征去估计总体特征。而这个工作需要建立理论基础,证明其可行性、有效性、可信度等,这就是统计量做出的理论基础。

三、如何应用统计量?

这里写图片描述
这里写图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值