定义
设 X 1 , … , X n X_{1}, \ldots, X_{n} X1,…,Xn 是来自总体 X X X 的一个样本, 若样本函数 T = T ( X 1 , … , X n ) T=T\left(X_{1}, \ldots, X_{n}\right) T=T(X1,…,Xn) 不含任何未知参数, 则称 T T T是一个统计量.
举例
设 X 1 , … , X n X_{1}, \ldots, X_{n} X1,…,Xn 是来自总体 X ∼ N ( μ , σ 2 ) X \sim N\left(\mu, \sigma^{2}\right) X∼N(μ,σ2) 的一个样本, 其中 μ \mu μ 和 σ \sigma σ 均未知, 则
∑
i
=
1
n
X
i
,
∑
i
=
1
n
X
i
2
,
F
n
(
x
)
\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{n} X_{i}^{2}, F_{n}(x)
i=1∑nXi,i=1∑nXi2,Fn(x) 是统计量
∑
i
=
1
n
(
X
i
−
μ
)
,
∑
i
=
1
n
X
i
2
σ
2
\sum_{i=1}^{n}\left(X_{i}-\mu\right), \sum_{i=1}^{n} \frac{X_{i}^{2}}{\sigma^{2}}
i=1∑n(Xi−μ),i=1∑nσ2Xi2 不是统计量.
2021年7月2日10:17:13