python绘制洛伦兹引子

本文通过Scipy和Matplotlib库,展示了洛伦兹方程的数值解,跟踪了两个初始条件微小变化下系统的轨迹演变,直观呈现了混沌现象。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

# -*- coding: utf-8 -*-
"""
Created on Thu Mar 17 07:55:34 2022

@author: liuya02
"""
#洛伦兹吸引子
from scipy.integrate import odeint
import numpy as np

def lorenz(w, t, p, r, b):
    # 给出位置矢量w,和三个参数p, r, b计算出    
    # dx/dt, dy/dt, dz/dt的值
    x, y, z = w    # 直接与lorenz的计算公式对应   
    return np.array([p*(y-x), x*(r-z)-y, x*y-b*z])

t = np.arange(0, 30, 0.01)
    # 创建时间点
    # 调用ode对lorenz进行求解, 用两个不同的初始值
track1 = odeint(lorenz, (0.0, 1.00, 0.0), t, args=(10.0, 28.0, 3.0))
track2 = odeint(lorenz, (0.0, 1.01, 0.0), t, args=(10.0, 28.0, 3.0))

# 绘图
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt

fig = plt.figure()
ax = Axes3D(fig)
ax.plot(track1[:,0], track1[:,1], track1[:,2])
ax.plot(track2[:,0], track2[:,1], track2[:,2])
plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一叶屋檐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值