Open CASCADE之B-Spline Curve Library

本文深入探讨了B样条理论的历史背景、基本定义及其在OpenCascade中的实现方式,介绍了B样条曲线的构造原理,以及如何通过B样条基函数实现局部控制和参数连续性,同时涵盖了OCC中BSplCLib提供的关键算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、 概述 Overview

1946年由Schoenberg提出了B样条理论,给出了B样条的差分表达式;1972年de Boor和Cox分别独立给出了关于B样条的标准算法。Gordon和Riesenfeld又把B样条理论用于形状描述,最终提出了B样条方法。用B样条基替代了Bernstein基,构造出B样条曲线,这种方法继承了Bezier方法的一切优点,克服了Bezier方法存在的缺点,较成功地解决了局部控制问题,又轻而易举地在参数连续性基础上解决了连接问题,从而使自由曲线曲面形状的描述问题得到较好解决。

p次B样条曲线的定义为:

wps_clip_image-15140

其中:

Pi是控制顶点(control point);

Ni,p(u)是定义在非周期节点矢量上的p次B样条基函数;

有很多方法可以用来定义B样条基函数以及证明它的一些重要性质。例如,可以采用截尾幂函数的差商定义,开花定义,以及由de Boor和Cox等人提出的递推公式等来定义。我们这里采用的是递推定义方法,因为这种方法在计算机实现中是最有效的。

令U={u0,u1,…,um}是一个单调不减的实数序列,即ui<=ui+1,i=0,1,…,m-1。其中,ui称为节点,U称为节点矢量,用Ni,p(u)表示第i个p次B样条基函数,其定义为:

wps_clip_image-10013

B样条基有如下性质:

a) 递推性;

b) 局部支承性;

c) 规范性;

d) 可微性;

根据B样条曲线定义可知,给定控制顶点Pi(control points),曲线次数p(degree)及节点矢量U(knot vectors),B样曲线也就确定。对于有理B样条曲线,还需要参数权重(weights)。

二、 OCC中的B样条曲线库 BSplCLib in OCC

在Open Cascade中的工具箱(Toolkit)TKMath中的包(package)BSplCLib是B样条曲线库,为B样条曲线曲面的计算提供了支持。它提供了三方面的功能:

对节点矢量(knot vectors)及重复度(multiplicities)的管理;

对多维样条的支持,即B样条方法中控制顶点的维数可以是任意维数(dimension);

二维和三维样条曲线的方法;

Open Cascade中的B样条曲线由下列数据项定义:

 

定义

 

变量类型

 

变量名称

 

控制顶点control points

 

TColgp_Array1OfPnt

 

Poles

 

权重weights

 

TColStd_Array1OfReal

 

Weights

 

节点knots

 

TColStd_Array1OfReal

 

Knots

 

重数multiplicities

 

TColStd_Array1OfInteger

 

Mults

 

次数degree

 

Standard_Integer

 

Degree

 

周期性periodicity

 

Standard_Boolean

 

Periodic

 

 

B样条曲线库BSplCLib提供了一些基本几何算法:

B样条基函数及其导数的计算BSplCLib::EvalBsplineBasis();

节点插入BSplCLib::InsertKnot();

节点去除BSplCLib::RemoveKnot();

升阶BSplCLib::IncreaseDegree();

降阶;

结合《The NURBS Book》和Open Cascade中的BSplCLib的源程序,可以高效的学习NURBS。《The NURBS Book》中有详细的理论推导及算法描述,而Open Cascade中有可以用来实际使用的程序。理论联系实际,有助于快速理解NURBS的有关概念及其应用。

 

---

opencascade-7.4.0\src\BSplCLib\BSplCLib.cxx

opencascade-7.4.0\inc\BSplCLib.hxx

//! The 3d or 2d B-spline curve is defined with :
//!
//! . its control points : TColgp_Array1OfPnt(2d)        Poles
//! . its weights        : TColStd_Array1OfReal          Weights
//! . its knots          : TColStd_Array1OfReal          Knots
//! . its multiplicities : TColStd_Array1OfInteger       Mults
//! . its degree         : Standard_Integer              Degree
//! . its periodicity    : Standard_Boolean              Periodic
//!
//! Warnings :
//! The bounds of Poles and Weights should be the same.
//! The bounds of Knots and Mults   should be the same.
//!
//! Note: weight and multiplicity arrays can be passed by pointer for
//! some functions so that NULL pointer is valid.
//! That means no weights/no multiplicities passed.
//!
//! No weights (BSplCLib::NoWeights()) means the curve is non rational.
//! No mults (BSplCLib::NoMults()) means the knots are "flat" knots.

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值