Stable Diffusion WebUI Forge 支持 Flux 了!

Flux横空出世有段时间了,模型效果也得到了广泛的认可,但是 Stable Diffusion WebUI 官方迟迟没有跟进,据说是因为要修改很多底层的处理机制,加之ComfyUI如火如荼,可能AUTOMATIC1111大佬的心气也不是很高,选择了躺平,又或者是在秘密的憋大招。

不过在开源的AI绘画界还有另一个大佬,那就是 ControlNet 的作者张吕敏,他搞了一个SD WebUI的衍生版:Stable Diffusion WebUI Forge。Flux发布没多久,Forge就开始了相关的支持工作,虽然目前还有很多特性没有得到支持(这也间接说明WebUI支持Flux的改造难度确实很大),比如ControlNet,但是基本的文生图和图生图已经没有什么问题了,喜欢WebUI的同学可以体验下了。

使用方法

我这里截了一张在Forge中使用Flux生图的操作过程,大家可以有个基本的认识。

img

下面分步介绍下:

1、UI

选择Flux。选择不同的UI,下边的一些选项会有所变化,比如宽度和高度、提示词引导系数的默认值等等。

2、模型和VAE/Text Encoder

这里演示用的Flux基础模型自带VAE(潜空间编解码器)和Text Encoder(文本提示词编码器),所以不需要选择VAE/Text Encoder;如果你使用的Flux模型是单独的unet模型,则需要选择VAE和Text Encoder。

Forge支持的Flux基础模型一般有这几种:

  • flux1-dev-bnb-nf4-v2.safetensors 张吕敏大佬搞的unet量化模型。
  • flux1-dev-fp8_unet.safetensors 只包含unet模型。
  • flux1-dev-fp8.safetensors 包含unet、vae和text encoder模型。

这几个模型需要放到 Forge 模型目录的基础模型子目录下。

Forge需要的VAE和Text Encoder模型包括:

  • ae.safetensors Flux使用的VAE模型;
  • clip_l.safetensors 相对传统的文本提示词编码器模型;
  • t5xxl_fp16.safetensors 比较新的文本提示词编码器模型,使用自然语言。

这几个模型需要放到 Forge 模型目录的 vae 子目录下。

这里给出一些模型的搭配组合:

img

  • flux1-dev-fp8.safetensors
  • flux1-dev-fp8_unet.safetensors + ae.safetensors + clip_l.safetensors + t5xxl_fp16.safetensors
  • flux1-dev-bnb-nf4-v2.safetensors + ae.safetensors + clip_l.safetensors + t5xxl_fp16.safetensors(可选)

3、提示词

只需要正向提示词,Flux目前开放的模型不支持反向提示词。这里演示用的是:

1girl, black hair, smile, a textbox with ‘hello’

4、采样方法和调度器

不是所有的采样方法和调度器都支持Flux。

采样方法我测试了这几个是可以的:

  • DPM++ 2M
  • Euler
  • DPM2
  • [Forge] Flux Realistic(速度快,推荐)

调度器(Schedule type)选择 :Simple、Normal或者SGM Uniform都可以。

5、生成

最后点击生成就可以了,根据机器系统不同,需要的时间会有所差别。

首次生图需要加载模型,可能需要的时间更长一些。

**6、**其它参数

这里边还有一些其它参数:

  • 宽度和高度:可以根据自己的需要进行调整,Flux模型支持的尺寸可以覆盖SD1.5和SDXL支持的尺寸。
  • 迭代步数:20-30
  • 总批次数:一共生成几次。可以连续生成多次,选择其中最好看的,俗称抽卡。
  • 单批数量:每次生成几张图片,比较消耗显存,显存大的话可以设置的多点。
  • Distilled CFG Scale 和 提示词引导系数:这两个都不能设置的很大,默认就可以了,绝大部分情况下不需要调整。
  • 随机数种子:每次生成都是用不同的随机数,图片会更加多样化。

环境配置

量化之后的Flux模型需要的显存大幅降低,12G显存就能跑起来。

不过要想实现更好的效果,还得是尽量选择损失比较小的模型。演示用的 flux1-dev-fp8 在资源和质量之间取得了一个平衡,推荐大家使用。

本地部署

Stable Diffusion WebUI Forge 提供了一个一键安装包:

https://github.com/lllyasviel/stable-diffusion-webui-forge/releases/download/latest/webui_forge_cu121_torch231.7z

下载后需要解压,然后进入解压出的文件夹,双击执行 update.bat,将程序升级到最新版本,最后双击执行 run.bat ,启动程序。

img

其它模型还需要自己手动下载,放到相应的目录中。

具体说明可以看官方文档:

https://github.com/lllyasviel/stable-diffusion-webui-forge?tab=readme-ov-file#installing-forge

云环境体验

我在 AutoDL 的 SD WebUI Forge 镜像已经升级到最新版本,一键启动,即可快速体验Flux生成图片。

实例创建方法1

镜像地址:https://www.codewithgpu.com/i/lllyasviel/stable-diffusion-webui-forge/yinghuoai-sd15-webui-forge

点击页面右下角的“AutoDL 创建实例”即可。

img

实例创建方法2

直接租用新实例:https://www.autodl.com/create

镜像选择“社区镜像”->“yinghuoai-sd15-webui-forge”。

img

显卡选择

显卡最好选择20G显存以上的,3090或者4090最佳,1卡即可,首选“西北B区”,网络稳定,如下图所示:

img

启动Forge程序

首先通过容器实例进入 JupyterLab 交互管理界面:

img

然后在其中的“Flux-启动器”中启动程序:

img

待页面展示,http://127.0.0.1:6006,代表启动成功。

img

回到容器实例列表页面,点击“自定义服务”,即可在浏览器打开 SD WebUI Forge:

img

资源下载

需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

1.stable diffusion安装包 (全套教程文末领取哈)

随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。

最新 Stable Diffusion 除了有win多个版本,就算说底端的显卡也能玩了哦!此外还带来了Mac版本,仅支持macOS 12.3或更高版本

在这里插入图片描述

2.stable diffusion视频合集

我们在学习的时候,往往书籍代码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,一步步带你入门stable diffusion,科学有趣才能更方便的学习下去。

在这里插入图片描述

3.stable diffusion模型下载

stable diffusion往往一开始使用时图片等无法达到理想的生成效果,这时则需要通过使用大量训练数据,调整模型的超参数(如学习率、训练轮数、模型大小等),可以使得模型更好地适应数据集,并生成更加真实、准确、高质量的图像。

在这里插入图片描述

4.stable diffusion提示词

提示词是构建由文本到图像模型解释和理解的单词的过程。可以把它理解为你告诉 AI 模型要画什么而需要说的语言,整个SD学习过程中都离不开这本提示词手册。

在这里插入图片描述

5.AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述
这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值