在数字艺术和创意领域,FLUX以其独特的虚实结合技术,已经成为艺术家和设计师们手中的利器。今天,我们激动地宣布,FLUX与Forge的全面合作,为AI绘画的未来开启了新的篇章。
Forge是一款深受艺术家喜爱的3D建模和渲染软件,而FLUX则是一款创新的AI绘画工具。这次合作,使得Forge全面支持FLUX的使用,为艺术家们提供了更多的创作灵感和可能性。
通过FLUX与Forge的结合,艺术家们可以更加轻松地创作出具有高度艺术性和创新性的作品。FLUX的AI绘画功能可以帮助艺术家们快速地生成丰富的纹理和细节,而Forge的3D建模和渲染功能则可以为这些作品提供更加真实和生动的视觉效果。
这次合作的推出,不仅提升了FLUX的性能和功能,还为艺术家们提供了更多的创作灵感和可能性。无论是3D建模还是AI绘画,FLUX与Forge的结合都为艺术家们提供了一个全新的创作平台,使得他们可以更加自由地表达自己的创意和想法。
FLUX与Forge的全面合作,只是FLUX创新旅程的一部分。未来,我们将继续探索和突破,为数字艺术和创意领域带来更多的惊喜和变革。让我们一起期待,这个充满无限可能的FLUX新纪元!
-
flux1-dev-bnb-nf4-v2.safetensors 使用 NF4 中的主要模型进行完整的 flux-dev 大模型,第1个下载模型。
-
flux1-dev-fp8.safetensors 使用 FP8 中的主要模型进行完整的 flux-dev 大模型,第2个下载模型。
-
2个大模型拷贝在"根目录\webui\models\Stable-diffusion"即可完成模型安装。
-
接下来WebUI Forge和WebUI的操作类似,分成3大模块,设置模型(红色区域),设置提示词(蓝色区域),设置参数(绿色区域)。
设置模型
- 点击 run.bat 启动程序(启动阶段关闭魔法)。WebUI Forge 现在有 sd/xl/flux/all 4 种 UI 界面可选,适用于不同种类的模型。
- 左上角UI位置,选择模型大类为Flux
-
Checkpoint位置,选择Flux大模型
-
如果您的设备是 RTX 3XXX/4XXX GPU 的 GPU,支持 CUDA 11.7 以上版本,那么建议使用 NF4,速度和出图效果质量都不错。您只需下载
flux1-dev-bnb-nf4.safetensors
。 -
如果您的设备是 GTX 10XX/20XX 的 GPU,那么您的设备可能不支持 NF4,您只需下载
flux1-dev-fp8.safetensors
。
- VAE / Text Encoder位置,选择VAE和CLIP模型。
此处留空,因为我们使用的两种大模型(flux1-dev-bnb-nf4
,flux1-dev-fp8
)都已内置VAE和CLIP模型,无需选择。
-
Diffusion in Low Bits位置,选择Flux模型种类/精度
-
在大多数情况下,您只需将其设置为自动
Automatic
,然后它将使用您下载的大模型自动匹配模型种类/模型精度。 -
务必不要加载FLUX大模型**
flux1-dev-fp8.safetensors
****时使用 NF4 选项!**如果这样做,虽然您最终获得没有错误的图像。但是您首先浪费 30 秒将模型反量化为 fp16,然后再浪费 60 秒将其再次量化为 NF4模型flux1-dev-bnb-nf4.safetensors
。因为模型被量化了两次,虽然不会报错,但最后输出图片质量也会下降。
- 模型设置完毕界面如图所示,后面三个内存交换可以忽略不设置。
内存交换(非必须可跳过)
**核心:**当你模型较大内存较小时,通过交换技术让你即使小内存也能使用体积较大的模型,方便硬件配置一般的用户。
**选项:**3个可设置,交接方法,交换位置,GPU内存权重大小。
交换位置
- 让我们以 FP8 模型为例,大小为12GB。
- 假设你的电脑,拥有16GB 专有GPU内存,16GB 共享GPU内存,32GB内存
-
然后你想把模型移到 GPU。模型文件大小是 12GB,假如你的GPU 内存 只有8GB 大。那怎么办?答案是将模型分成两部分。一部分到 GPU,另一部分到“交换”位置。
-
如果您选择 CPU 作为交换位置,您的模型将加载到内存和专有GPU内存,这里界面写的是CPU我觉得写内存会更好。温馨提醒:推荐较差显卡用户使用此“CPU”交换方案,这些显卡显存较少在使用“共享”交换时会崩溃。
- 如果您选择“共享”作为交换位置,您的模型将加载到专有GPU内存+共享GPU内存,温馨提醒推荐比较新的显卡使用“共享”交换方案,速度比“CPU”交换快约 15%。
以下是A4000-16G显存设置后的结果,专有内存被大幅使用,提高出图速度。
GPU内存权重大小
您可以选择较大的GPU内存权重大小数值将模型加载到 GPU。一般设置数值为GPU专用内存的80%即可。比如我的专有GPU内存是16GB,就约等于16*1024=16384MB,设置13107MB即可。
GPU 权重越大情况,速度越快。但如果值太大,就会出现一些 GPU 问题,速度会降低 10 倍左右。
**GPU 权重越小,**速度越慢。但由于现在有更多可用闲置显存,因此您可以扩散更大的图像。
交换方法
- 交换方式分两种
队列Queue:您将第一层加载到 GPU,然后计算,然后加载另一层,然后计算,就像它是一个队列一样。
并列Async:您将有两个工作器。一个工作器始终计算图层。一个工作器始终将图层加载到 GPU。它们同时工作。
实验测试ASYNC方法比Queue快 30% 。但是该方法有一个缺点,即一个工作器可能会错误地将太多层移动到 GPU,导致另一个工作器没有足够的 GPU 内存进行计算。在这种情况下速度会突然慢 10 倍。
- 根据以上信息,您现在可以为您的设备调整最佳模型配置:
- 如果使用交换内存的时候系统发生崩溃,请打开系统的虚拟内存
设置提示词
-
有两个参数需要提前设置
-
建议设置 CFG=1,无需输入负面提示词,设置完毕后负面提示词输入框将变灰
-
因为Flux-dev 是Flux-pro蒸馏得到模型。所以建议设置参数 “蒸馏 CFG 指导Distilled CFG Scale”。默认值为 3.5。
Astronaut in a jungle, cold color palette, muted colors, very detailed, sharp focus
设置参数
- 按照如下设置设置参数即可。
Steps: 30, Sampler: Euler, Schedule type: Simple, CFG scale: 1, Distilled CFG Scale: 3.5, Seed: -1, Batch size: 4, Size: 896x1152, Model: flux1-dev-bnb-nf4-v2
如果电脑硬件配置一般,步数设置20即可,批量数量设置为1。
- 设置完成界面如图。点击右上角的GENERATE,AI即可生成图片。
- AI出图
资料软件免费放送
次日同一发放请耐心等待
关于AI绘画技术储备
学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!
感兴趣的小伙伴,赠送全套AIGC学习资料和安装工具,包含AI绘画、AI人工智能等前沿科技教程,模型插件,具体看下方。
需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
**一、AIGC所有方向的学习路线**
AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。
二、AIGC必备工具
工具都帮大家整理好了,安装就可直接上手!
三、最新AIGC学习笔记
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、AIGC视频教程合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】