1691.Abundance

Abundance

题意:

An abundant number is a positive integer n for which Sigma(n) – 2n > 0, Where Sigma(n) is defined as the sum of all the divisors of n. And the quantity Sigma(n) – 2n is called abundance.
Given the range of n, you should find out the maximum abundance value that can be reached. For example, if the range is [10,12], then the only abundant number is 12, and the maximum abundance value is Sigma(12) – 2 * 12 = 4.

Input:

Input may contain several test cases. The first line is a positive integer, T (T<=20), the number of test cases below. Each test case contains two positive integers x, y, (1<= x <= y <= 1024), indicating the range of n.

Output

For each test case, output the maximum abundance value that can be reached in the range of n. If there is no abundant number n in the given range, simply output -1.
Sample Input

3
1 1
10 12
1 1024
Sample Output

-1
4
1208

代码实现:

// [n, m]范围内满足条件的值得最大一个
//  sigma(n) - 2*n > 0的n中, 输出最大的那个n对应的sigma(n) - 2*n
// 其中sigma(n)是n的所有因子的和

#include<iostream>
#include<cmath>
using namespace std;

int main() {
    int t, n, m, num, count, total, sum;
    int result, max;
    int divisor[1000], fit[1000];
    cin >> t;
    while (t--) {
        cin >> n >> m;
        total = 0;
        for (int i = n; i <= m; ++i) {
            num = i;
            count = 0;
            sum = 0;
            for (int j = 1; j <= num; j++) {
                if (num % j == 0) 
                    divisor[count++] = j;
            }
            for (int k = 0; k < count; ++k) sum += divisor[k];
            result = sum - 2*num;
            if (result > 0) fit[total++] = result; 
        }
        if (total == 0) {
            cout << "-1" << endl;
        } else {
            max = fit[0];
            for (int i = 1; i < total; ++i) {
                max = max > fit[i] ? max : fit[i]; 
            }
            cout << max << endl;
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值