CondeseNetV2:清华与华为出品,保持特征的新鲜是特征复用的关键 | CVPR 2021

论文提出SFR模块,直接重新激活一组浅层特征来提升其在后续层的复用效率,而且整个重激活模式可端到端学习。由于重激活的稀疏性,额外引入的计算量非常小。从实验结果来看,基于SFR模块提出的CondeseNetV2性能还是很不错的,值得学习

来源:晓飞的算法工程笔记 公众号

论文: CondenseNet V2: Sparse Feature Reactivation for Deep Networks

Introduction


 目前大多数SOTA卷积网络都只能应用于算力充足的场景,而低算力场景往往是多数算法落地的实际场景,所以轻量级网络的研究是十分重要的。近期有研究认为DenseNet的长距离连接是低效的,较深的层往往将早期特征认定为过时并在生成新特征时将其忽略,造成了额外的内存和计算消耗。
 为了缓解这一低效的设计,CondenseNet在训练过程中根据权重动态逐步裁剪不重要的层间连接,而ShuffleNetV2则通过分支和shuffle的设计使得层间连接随着层间距离增大而减少。对于这两个网络的具体介绍,可以看看公众号之前发的两篇解读:《CondenseNet:可学习分组卷积,原作对DenseNet的轻量化改进 | CVPR 2018》《ShuffleNetV1/V2简述 | 轻量级网络》

 尽管上面的两个改进网络都有其提升,但论文认为直接淘汰浅层特征做法过于激进,浅层特征还是可能包含对生成深层特征有用的信息。在仔细研究后,论文提出了特征重激活(feature reactivation)的概念。整体思路如图1c所示,更新浅层特征从而可以更高效地被深层特征复用。
 但需要注意的是,如果直接更新全部特征会带来过度的计算量,影响整体的效率。实际上,从DenseNet的成功可以看出,大部分的特征是不需要每次都更新的。为此,论文提出可学习的SFR(sparse feature reactivation)模块,通过学习的方式选择浅层特征进行重新激活,仅引入少量计算量就可以保持特征的"新鲜"。在应用时,SFR模块可转换分组卷积,复用当前的加速技术保证实践性能。
 论文基于SFR模块和CondeseNet提出了CondenseNetV2,在性能和特征复用程度上都有很不错的表现,能媲美当前SOTA轻量级网络。实际上,SFR模块可简单地嵌入到任意卷积网络中,论文也将SFR模块嵌入ShuffleNetV2进行了相关实验,效果也是杠杠的。

Method


Sparse Feature Reactivation

  • Feature reuse mechanism

 先定义DenseNet中的特征复用机制。假设block共 L L L层,每层的特征输出为 x l x_{l} xl x 0 x_0 x0为block输入。由于当前层会以稠密连接的形式复用前面所有层的输出, l l l层的复合函数会接受所有的前层特征作为输入:

 在CondenseNet中, H l H_l Hl为可学习分组卷积(LGC),用于自动学习输入的分组以及去掉不重要的连接。而在ShuffleNet中, H l H_l Hl的输入会根据与当前层的距离进行丢弃。上面的两种网络设计倾向于丢弃冗余的长距离连接,取得了很不错的性能提升,然而这样的设计可能会阻碍高效的特征复用机制的探索。实际上,导致深层不再使用浅层特征的主要原因是特征 x l x_l xl一旦产生就不再改变。为此,论文提出计算消耗少的SFR模块,使得过时的特征可以被廉价地复用。

  • Reactivating obsolete features

 对第 l l l层引入重激活模块 G l ( ⋅ ) G_l(\cdot) Gl(),该模块将层输入 x l x_l xl转换为 y l y_l yl,用于激活前面的层输出特征。定义激活操作 U ( ⋅ , ⋅ ) U(\cdot, \cdot) U(,)为与 y l y_l yl相加,稠密层的输入重激活可公式化为:

x l o u t x_l^{out} xlout为重激活的输出特征, l l l层的可学习分组卷积操作 H ( ⋅ ) H(\cdot) H()输出新特征 x l x_l xl。此外,旧特征 ( x i , i = 1 , ⋯   , l − 1 ) (x_i, i=1,\cdots,l-1) (xi,i=1,,l1)会被重新激活以提高其作用。

 显然,重激活所有的特征是不必要的,DenseNet的成功说明大部分特征是不需要重新激活的,而且过多的重激活也会带来过多的额外计算。为此,论文希望能自动找到需要重激活的特征,只对这部分特征进行重激活。于是,论文提出了SFR(sparse feature reactivation)模块,如图2所示,基于剪枝的方法逐步达到这个目标。

  • Spare feature reactivation(SFR)

 重激活模块 G l ( ⋅ ) G_l(\cdot) Gl()包含卷积层、BN层和ReLU层,卷积核的权值矩阵 F F F的大小表示为 ( O , I ) (O, I) (O,I) O O O I I I分别表示输出维度和输入维度。将 G l ( ⋅ ) G_l(\cdot) Gl()模块的输入 x l x_l xl分成 G G G组,权值矩阵 F F F也随之分为 G G G F 1 , ⋯   , F G F^1,\cdots,F^G F1,,FG,每个的大小变为 ( O , I / G ) (O,I/G) (O,I/G)。注意这里的分组不是将卷积变为分组卷积,只是为了方便稀疏化而进行的简单分组,计算量和参数量没改变。为了将重激活连接稀疏化,定义稀疏因子 S S S(也可以每组不同),使得每组在训练后只能选择 O S \frac{O}{S} SO个维度进行重激活。
 在训练期间,每个 G l ( ⋅ ) G_l(\cdot) Gl()中的连接方式由 G G G个二值掩码 M g ∈ { 0 , 1 } O × 1 G , g = 1 , ⋯   , G M^g\in\{0,1\}^{O\times\frac{1}{G}},g=1,\cdots,G Mg{0,1}O×G1,g=1,,G控制,通过将对应的值置零来筛选出 F g F^g Fg中不必要的连接。换句话说,第 g g g组的权值变为 M g ⊙ F g M^g\odot F^g MgFg ⊙ \odot 为element-wise相乘。
 SFR模块参考了CondenseNet的训练方法进行端到端训练,将整体训练过程分为 S − 1 S-1 S1个稀疏阶段和最终的优化阶段。假设总训练周期为 E E E,则每个稀疏阶段的周期数为 E 2 ( S − 1 ) \frac{E}{2(S-1)} 2(S1)E,优化阶段的周期数为 E 2 \frac{E}{2} 2E。在训练时,SFR模块先重激活所有特征,即将 M g M^g Mg初始为全1矩阵,随后在稀疏阶段逐步去掉多余的连接。在每个稀疏阶段中, g g g组内重激活 i i i输出的重要程度通过计算对应权值的L1-norm ∑ j = 1 I / G ∣ F i , j g ∣ \sum^{I/G}_{j=1}|F^g_{i,j}| j=1I/GFi,jg得到,将每个组中重要程度最低的 O S \frac{O}{S} SO个输出(除掉组内已裁剪过的)裁剪掉,即将 j j j输出对应的 g g g组权值 M i , j g M^g_{i,j} Mi,jg设为零。如果 i i i输出在每个组中都被裁剪了,则代表该特征不需要重激活。在训练之后,每组输入只更新 1 / S 1/S 1/S比例的输出, S S S的值越大,稀疏程度越高。

  • Convert to standard group convolution

 在测试阶段,SFR模块可转换为标准分组卷积和index层的实现,这样的实现在实际使用中可以更高效地计算。如图3所示,转换后的分组卷积包含 G G G组,输出和输入维度为 ( O G S , I ) (\frac{OG}{S}, I) (SOG,I)。在分组卷积产生中间特征后,index层用于重排输出的顺序,从而获得 y l y_l yl。在排序时,需要将相同序号的中间特征相加再进行排序。

Architecture Design

 基于提出的SFR模块,论文在CondenseNet的基础上改造出CondeseNetV2的新稠密层,结构如图4右所示。LGC层先选择重要的连接,基于选择的特征产生新特征 x l x_l xl。随后SFR模块将 x l x_l xl作为输入,学习重激活过时的特征。跟CondenseNet一样,为了增加组间交流,每次分组卷积后面都接一个shuffle操作。从图4的结构对比可以看出,CondenseNet和CondenseNetV2之间的差异在于旧特征的重激活,CondenseNetV2的特征复用机制效率更高。

 CondenseNetV2沿用了CondenseNet指数增长以及全稠密连接的设计范式,加入了SFR-DenseLayer。结构图表1所示,SE模块和hard-swish非线性激活依旧使用。表1展示的是参考用的基础设计,调整的超参数或网络搜索可以进一步提升性能。

Sparse Feature Reactivation in ShuffleNetV2

 SFR模块可嵌入到任意CNN中,除了CondenseNet,论文还尝试了ShuffleNet的改造。改造后的结构如图5所示,论文称之为SFR-ShuffleNetV2,仅应用于非下采样层。

Experiment


 对不同层的卷积核权值进行可视化,纵坐标可认为是来自不同层的特征。可以看到,CondenseNet更关注相邻层的特征,而CondenseNetV2则也会考虑较早层的特征。

 通过卷积核权值之和直接展示了层间的关联层度,进一步展示了CondenseNet对较早层的复用程度较高。

 不同参数下的准确率对比,其中图b的 S = 1 S=1 S=1即CondenseNet。

 论文提出了三种不同大小的CondenseNetV2,参数如表2所示,而ImageNet上的性能对比如表3所示。

 在ImageNet上对比各模块的实际提升效果。

 与SOTA模块在ImageNet上进行对比。

 在端侧设备上进行推理速度对比。

 CIFAR数据集上的网络对比。

 作为检测主干网络的性能对比。

Conclusion


 论文提出SFR模块,直接重新激活一组浅层特征来提升其在后续层的复用效率,而且整个重激活模式可端到端学习。由于重激活的稀疏性,额外引入的计算量非常小。从实验结果来看,基于SFR模块提出的CondeseNetV2性能还是很不错的,值得学习。




如果本文对你有帮助,麻烦点个赞或在看呗~
更多内容请关注 微信公众号【晓飞的算法工程笔记】

work-life balance.

  • 21
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
NSGA-III是一种多目标优化算法,用于在给定的一组目标函数下找到一组非支配解,以实现多目标优化。在某种情况下,如果使用NSGA算法,模型C可能会被直接去掉。因此,使用pNSGA-III算法的第一个原因是为了保留模型C。此外,对于模型B和C,它们的准确率增长类似,但由于训练导致准确率波动,一旦模型A的准确率高于B,B就会被去掉。因此,第二个原因是使用pNSGA-III算法,以考虑准确率的增长速度进行non-dominated排序和选择。 随机森林是一种集成学习方法,由多个决策树组成。每个决策树基于不同的样本和特征进行训练,并通过投票或平均来预测结果。随机森林可以用于分类和回归问题,并且在处理高维数据和大量特征时表现良好。然而,与NSGA-III不同,随机森林不是一个优化算法,而是一种机器学习模型。 总结起来,NSGA-III是一种多目标优化算法,用于解决多目标优化问题,而随机森林是一种集成学习方法,用于解决分类和回归问题。这两者有不同的应用领域和目的。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [华为提出基于进化算法和权值共享的神经网络结构搜索,CIFAR-10上仅需单卡半天 | CVPR 2020...](https://blog.csdn.net/dQCFKyQDXYm3F8rB0/article/details/104568096)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值