CondenseNet: An Efficient DenseNet using Learned Group Convolutions

Abstract

  • 深度神经网络越来越多地用于计算资源有限的移动设备上。 在本文中,我们开发了CondenseNet,这是一种具有前所未有的效率的新型网络架构。 它将密集连接与称为学习组卷积的新模块相结合。 密集连接有助于网络中的特征重用,而学习组卷积消除了该特征重用的层之间的连接是超级的。 在测试时,我们的模型可以使用标准组卷积来实现,从而允许在实践中进行有效的计算。 我们的实验表明,CondenseNets比最先进的紧凑卷积网络(如Shuf fl eNets)更有效。

Introduction

  • 视觉识别任务中卷积网络(CNN)的高精度,如图像分类[12,19,38],推动了在计算资源有限的平台上部署这些网络的愿望,例如机器人技术,自动驾驶汽车 ,以及移动设备。不幸的是,最准确的深度CNN,例如ImageNet [6]和COCO [31]挑战的获胜者,被设计用于计算资源丰富的场景。 因此,这些模型不能用于在低计算设备上执行实时推断。
  • 该问题推动了计算上有效的CNN的发展,例如,修剪冗余连接,使用低精度或量化的权重,或使用更有效的网络架构。这些努力带来了实质性的改进:为了达到与ImageNet上的VGG [38]相当的精度,ResNets将计算量减少了5倍,DenseNets 减少了10倍,MobileNets和ShuffleNets相差25倍。 在移动设备上进行深度学习的典型设置是CNN在多GPU机器上训练但部署在计算有限的设备上。 因此,良好的网络架构允许在训练期间快速并行化,但在测试时紧凑。
  • 最近的工作[4,20]表明CNN中存在大量冗余。 逐层连接模式迫使网络从整个网络中的早期层复制特征。 DenseNet架构[19]通过直接将每个层与其前面的所有层连接来减少对特征复制的需求,这导致了特征重用。虽然效率更高,但我们假设密集连接在后续层中不需要早期特征时会引入冗余。 我们提出了一种新方法来修剪层之间的这种冗余连接,然后引入更有效的架构。
  • 与先前的修剪方法相比,我们的方法在训练过程中自动学习解析网络,并产生可以使用组卷积有效实现的常规连接模式。 具体而言,我们将一个层的过滤器分成多个组,并在训练期间逐渐删除每组不太重要的特征的连接。 重要的是,传入功能组不是预定义的,而是学习的。 最终的模型名为CondenseNet,可以在GPU上有效地进行训练,并且在移动设备上具有很高的推理速度。
  • 我们的图像分类实验表明,CondenseNets始终优于其他网络架构。 与DenseNets相比,CondenseNets在相当的精度水平下仅使用1/10的计算量。 在ImageNet数据集[6]上,拥有2.75亿FLOPs1的CondenseNet实现了29%的前1错误,这与需要两倍计算量的MobileNet的错误相当。

Related Work and Background

  • CondenseNets与通过权重修剪[11,14,27,29,32]和/或权重量化提高(卷积)网络的推理效率的方法密切相关。这些方法是有效的,因为深度网络通常具有大量冗余权重,可以在没有牺牲(有时甚至是改进)准确性的情况下进行修剪或量化。对于卷积网络,不同的修剪技术可能会导致不同的粒度级别。细粒度修剪,例如独立的重量修剪[10
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值