
机器学习
文章平均质量分 89
lidashent
这个作者很懒,什么都没留下…
展开
-
生活电子常识-deepseek-r1本地化部署+ui界面搭建
deepseek-r1 14b模型,32b模型部署在本地电脑上也能实现非常好的性能。因此有兴趣研究了下如何在本地部署。同时最新流行mauns工作流,他们提供一句话实现网页端任意应用的能力。实际上,你也可以用本地的模型来实现离线的ai工作流功能。不过这里讲述本地如何首先搭建大模型,一步步来具体的实现原理,操作步骤如下。原创 2025-03-23 21:57:02 · 601 阅读 · 0 评论 -
在电脑本地运行llama3-8b模型
llama.cpp的主要目标是能够在各种硬件上实现LLM(大型语言模型)推理,提供1.5位、2位、3位、4位、5位、6位和8位整数量化,用来减小内存使用和加快推理速度.当然精度会变差,其作用是给模型瘦身。ollama支持可运行的模型,图片这里只是一部分而已,只需要下载下面的软件和模型文件,即可直接运行,而无需配置其他。gguf是一个包文件,打包了所有运行模型需要的配置以及参数,方便快速部署,而不是需要多个软件分别加载。因为我本地已经有一个gguf模型了,我的需求是将这个模型加载进ollama,然后运行。原创 2024-05-16 08:36:20 · 1350 阅读 · 0 评论 -
电脑本地搭建privateGPT流程
当我的电脑主机在本地运行privateGPT的时候我听到了cpu风扇在呼啸,至于privateGPT是干什么的,其实就相当于一个文档分析软件,只不过内置了一个gpt,你把文件丟给他,你可以向他提问题,然后他根据你扔进去的文档进行回答好处在于是本地运行的gpt,不会发生隐私泄露事件,一切分析和回答都在本地进行,如果你要读一些小说或者新闻,可以先丢给gpt让他读一遍,你边读边和他交流里面的内容还是挺有意思的不过privateGPT最终还是搭建完成了,跟着我一起看看搭建流程吧。原创 2024-04-19 23:06:47 · 1590 阅读 · 0 评论 -
在个人电脑上,本地部署llama2-7b大模型
我想也许很多人都想有一个本地的ai大语言模型,当然如果能够摆脱比如openai,goole,baidu设定的语言规则,可以打破交流界限,自由交谈隐私之类的,突破规则,同时因为部署在本地也不担心被其他人知道,那最好不过了那究竟有没有这样的模型呢?llama2-7b模型就可以同时你也可以为他设定角色,这是一个支持可进行身份定义的本地语言模型,而非固定角色。原创 2024-04-14 14:46:24 · 1968 阅读 · 0 评论 -
pytorch_神经网络构建6
神经网络则提出了一种新的方式,不必知道所有的环境状态,只需要让神经网络学习曾经经历过的有益的状态就可以了,就像人类一样,形成经验,我们可以把当前围棋环境参数输入神经网络,让神经网络自主学习如何走出下一步,估计下一步得分,只要对局足够多,神经网络就会学习的足够多,它就会根据有益的下棋经历,形成一套自己的经验价值奖励表,至于其从对局中学习到了什么,我们是无从得知的,但是从实际结果上看,从aphaGO击败柯洁后,几乎围棋领域已经无人敢称尊了。比如走迷宫问题,每上下左右,或者静止走一步都距离出口进入了不同的状态。原创 2024-03-03 21:11:57 · 1286 阅读 · 2 评论 -
pytorch-fastrcnn识别王者荣耀敌方英雄血条
最近看王者荣耀视频看到了一个别人提供的一个百里自动设计解决方案,使用一个外设放在百里的二技能上,然后拖动外设在屏幕上滑动,当外设检测到有敌方英雄时外设自动松开百里二技能达到自动射击的效果,我的思路一下就打开了,之前什么指哪打哪,计算电脑上二技能圆坐标和敌方英雄椭圆射击坐标函数映射,都是屁话,直接让二技能射击线进行像雷达一样的扫描就可以了,当检测到敌方英雄时自动松开二技能,这样百里不就可以超神了吗?而且延时更低,射击更快那么难点在哪里呢?还是敌方英雄血条的识别上,当然,这个不是问题。原创 2023-10-26 16:24:00 · 1799 阅读 · 3 评论 -
pytorch_神经网络构建4
循环神经网络原创 2023-10-16 13:52:07 · 1583 阅读 · 1 评论 -
pytorch_神经网络构建,卷积网络,篇3
卷积神经网络原创 2023-10-09 19:47:43 · 1053 阅读 · 1 评论 -
pytorch_神经网络构建(数学原理),篇2
神经网络的数学原理原创 2023-10-07 14:31:47 · 1956 阅读 · 2 评论 -
pytorch_神经网络构建基础原理,权重的自动递归解析,篇1
构建线性,逻辑回归,深层网络原创 2023-10-04 13:07:46 · 902 阅读 · 2 评论 -
tensorflow2.4--2.回归问题分析
线性回归实践分析与数学原理原创 2023-03-02 09:30:51 · 493 阅读 · 0 评论 -
机器学习—windows安装Gpu版caffe(资料已经全部打包,无需额外下载,必成功)-13
文章目录前言资料包下载地址:环境配置caffe配置问题1·安装vs2015版本2·安装cmake安装cuda和cudnn检查显卡是否支持cuda查看自己的显卡型号去官网查看是否支持cuda检查显卡的cuda算力安装cuda8.0和cudnn6.03·caffe-windows配置4·使用vs2015编译工程6·将编译后的caffe文件打包,作为python可调用的包6·caffe.exe的位置开始第一个工程测试一下能否运行如何打包lmdb文件前言你没看错,安装的是GPU版本caffe,如果你受够了CPU原创 2021-12-13 17:37:39 · 3003 阅读 · 5 评论 -
机器学习-caffe实现人脸检测-11
文章目录前言开始实现人脸检测1·数据格式1·1制作人脸图片1·2制作标签前言目标:给出图片,用框框住人脸部分开始实现人脸检测1·数据格式1·1制作人脸图片已经分好类存储的人脸和非人脸图片标签格式aaa.jpg x1,y1 x2,y2后两者坐标代表了一个标注的人脸框,需要机器学习其中的特点我们需要自己准备数据吗?如果是我们自己的项目当然如此,如果是学习,其实我们想做的前人已经努力过了,可以直接使用他们标注好的数据集1,benchmark是行业基准,(数据库,论文,源码,基准,结原创 2021-11-27 21:31:22 · 2576 阅读 · 0 评论 -
机器学习——caffe从数据准备到模型训练和预测全流程-9
文章目录前言新的工具——无代码神经网络安装caffe前言不仅仅需要知道这个图片的内容是什么,也需要让机器标注出图片的各部分内容,比如猫,狗,人,车等用框框标注出来,需要返回各个内容的坐标在做人脸识别时就需要知道人脸的位置以及各个特征点的位置,这都是必要的新的工具——无代码神经网络你没看错,不需要写代码,只需要定义一些配置文件,真正做到了设计神经网络就能让他跑起来的地步四个步骤:转换数据(设置数据位置以及数据格式)定义网络(编辑prototxt) 设计卷积层定义求解器(编辑pr原创 2021-11-27 08:07:14 · 1446 阅读 · 2 评论 -
机器学习—windows安装cpu版caffe(资料已经全部打包,无需额外下载,必成功)-10
文章目录前言资料包下载地址:环境配置caffe配置问题1·安装vs2015版本2·安装cmake3·caffe-windows配置4·使用vs2015编译工程6·将编译后的caffe文件打包,作为python可调用的包6·caffe.exe的位置前言caffe可以无代码训练神经网络,是一件利器。然而在windows上安装caffe极其痛苦。之所以安装在windows上纯属是因为电脑不想装linux双系统,来回切换太麻烦。看了很多的安装caffe的教程,只能说坑!坑!坑!要么是描述不够细节,一些操作省原创 2021-11-24 09:58:32 · 3788 阅读 · 4 评论 -
机器学习——图像识别、分布式、推荐系统-8
文章目录Tensorflow与深度学习深度学习CIFAR图片分类CIFAR图片分类设计分布式会话APIhooks常用钩子分布式Tensorflow分布式原理多机多卡分布式的架构分布式的模式分布式API1、创建集群2、创建服务3、工作节点指定设备运行分布式案例将图片识别的程序改成分布式推荐系统生活中无时无刻都在使用着推荐系统推荐系统的意义——解决信息过载如何去给你的网站用户推荐?——推荐的依据:推荐系统的结构推荐系统的原理推荐系统的分类推荐系统的分类基于用户的协同过滤基于物品的协同过滤基于物品的协同过滤分析用原创 2021-10-12 16:52:35 · 638 阅读 · 0 评论 -
机器学习——Tensorflow、神经网络-7
文章目录Tensorflow与深度学习神经网络神经网络基础感知机感知机与逻辑回归的联系与区别演示:神经网络的发展杰弗里·埃弗里斯特·辛顿神经网络的特点神经网络的组成浅层人工神经网络模型Mnist数据集神经网络分析one-hot编码分析one-hotAPI介绍获取数据SoftMax回归1、全连接-从输入直接到输出想一想线性回归的损失函数,那么如何去衡量神经网络的损失?损失计算-交叉熵损失公式(了解)2、SoftMax计算、交叉熵损失值列表平均值计算其他方法-损失下降API准确性计算Mnist数据集神经网络实现原创 2021-10-12 16:23:10 · 1011 阅读 · 0 评论 -
机器学习——TensorflowIO操作-6
文章目录Tensorflow与深度学习线程队列与IO操作在计算争分夺秒的时候,需要去提高IO读取的速度?队列和线程Tensorflow队列tf.FIFOQueue完成一个出队列、+1、入队列操作(同步操作)入队列需要注意队列管理器线程协调器文件读取文件读取流程2方法Tensorflow Feed操作张量关闭警告张量的阶和数据类型张量的阶张量的数据类型张量属性张量的动态形状与静态形状要点张量操作-生成张量正态分布张量操作-张量变换切片与扩展变量变量变量的创建变量的初始化可视化学习Tensorboard图中的符号意义增加变量显示tensorflow实现一个简单的线性回归案例Tensorflow运算API梯度下降APITen原创 2021-10-12 07:37:34 · 411 阅读 · 0 评论 -
机器学习——算法介绍-4
文章目录算法类别回归算法-线性回归分析线性回归损失函数(误差大小最小二乘法之正规方程损失函数直观图(单变量举例)最小二乘法之梯度下降正规方程与梯度下降的对比?线性回归实例波士顿房价数据案例分析流程回归性能评估sklearn回归评估APImean_squared_error1、LinearRegression与SGDRegressor评估问题:训练数据训练的很好啊,误差也不大,为什么在测试集上 面有问题呢?过拟合与欠拟合欠拟合原因以及解决办法过拟合原因以及解决办法L2正则化带有正则化的线性回归-RidgeRi原创 2021-10-12 00:20:33 · 1083 阅读 · 0 评论 -
机器学习——算法介绍-3
文章目录算法分类sklearn数据集数据集划分sklearn数据集划分APIscikit-learn数据集API介绍获取数据集返回的类型sklearn分类数据集数据集进行分割用于分类的大数据集sklearn回归数据集想一下之前做的特征工程的步骤?sklearn机器学习算法的实现-估计器估计器的工作流程分类算法-k近邻算法计算距离公式sklearn k-近邻算法APIk近邻算法实例-预测入住位置数据的处理实例流程问题k-近邻算法优缺点k-近邻算法实现分类模型的评估混淆矩阵为什么需要这些指标?其他分类标准分原创 2021-10-11 14:22:08 · 932 阅读 · 0 评论 -
机器学习——数据特征预处理-2
文章目录数据的特征处理转换结果数值型数据:类别型数据:时间类型:sklearn特征处理API归一化sklearn归一化APIMinMaxScaler语法归一化步骤归一化案例:约会对象数据归一化总结标准化结合归一化来谈标准化sklearn特征化APIStandardScaler语法标准化步骤标准化总结如何处理数据中的缺失值?Imputer语法Imputer流程关于np.nan(np.NaN)特征选择特征选择原因特征选择是什么sklearn特征选择APIVarianceThreshold语法VarianceTh原创 2021-10-11 10:52:49 · 838 阅读 · 0 评论 -
机器学习-特征工程介绍和文本特征提取-1
文章目录简介Scikit-learn与特征工程特征抽取数据来源数据处理特征抽取,字典类型案例特征抽取,文本类型简介机器学习,是人工智能的一个分支开发步骤:收集数据——爬虫,实际生活的数据数据格式处理—格式规范化,清洗垃圾数据(有些数据人为制造具有误导性,比如自然语言学习里的种族歧视语言,有些数据残缺不全)使用算法训练模型----模型会有一个评估函数进行评估,模型在得到数据后不断迭代,最终符合期望的准确率实际应用模型(明确问题需求,根据问题使用相应算法,使用框架等手段实现具体业务)Sciki原创 2021-10-11 07:41:01 · 530 阅读 · 0 评论