使用QE中的ld1.x制作超软赝势
输入文件
input | |
---|---|
rlderiv | 计算对数导数的半径 |
config | 电子结构。当“lsd”=1时,向上自旋和向下自旋状态可能出现两次,各自占位为:3p4 3p2 = 4up,2down。否则,假定采用洪德规则。若"rel"=2,则先填充jj=l-1/2的状态。如果一个状态出现两次,第一个状态jj=l-1/2,第二个状态jj=l+1/2 (S状态除外) (如果你想对所有可能状态的电子求平均,请使用rel_dist。)如果config=‘default’,代码使用"zed"来设置原子的基态电子配置。负占据被用来表示未束缚态; 它们实际上并没有被使用: |
eminld | 计算对数导数的能量范围,最小能量Ry |
emaxld | 最大能量Ry |
deld | 对数导数的能量 Δ \Delta ΔE |
nld | 要计算的对数导数的数目 |
iswitch | 1全电子计算2 赝势测试计算3 生成赝势4 LDA-1/2 correction, needs a previously generated PP file |
inputp | |
pseudotype | 赝势类型 1.单投影函数的保模势2.可分离形式的保模势(已过时)3.超软或PAW |
lloc | 局域势的角动量轨道 lloc=-1或lloc=-2伪化了全电子势,如果lloc=-2使用Troullier-Martins的原始配方(在r=0处一阶导数和二阶导数为零) lloc>-1使用相应的角动量做局域势 注意:如果lloc>-1,相应的通道必须是在名字列表和输入之后出现的波函数列表中的最后一个。 在相对论的情况下,如果两个波函数j=llo -1/2和j=lloc+1/2必须在列表的最后。 |
tm | .true.使用tm赝势生成理论Troullier-Martins pseudization [PRB 43, 1993 (1991)]、、 .false.使用rrkj赝势生成理论Rappe-Rabe-Kaxiras-Joannopoulos pseudization [PRB 41, 1227 (1990), erratum PRB 44, 13175 (1991)] |
rel | 相对论效应=0无相对论效应=1标量相对论效应=2全相对论效应(带自旋) |
which_augfun | =“AE”表示范德比尔特ultrasoft伪势=“BESSEL”表示PAW数据集=‘PSQ’,对增强函数也进行赝势化(使用贝塞尔函数将Q从原点到rmatch_augfun进行赝势化。)以下仅适用于PAW的功能:‘BESSEL’:使用贝塞尔函数来伪化Q’GAUSS’:使用2个高斯函数来伪化Q。‘BG’:使用单一高斯分布的原始Bloechl配方。注:如果lpaw为真,且which_augfun设置为AE,则将使用真实的全电子电荷,这将产生极其硬的增强函数。 |
rmatch_augfun | 仅当which - augfun与AE不同时使用。增强函数的伪化半径。目前它对所有的L有相同的值。 |
rmatch_augfun_nc | 只有which_augfun= PSQ时使用 如果.true。增加函数从原点被伪化到min(rcut(ns),rcut(ns1)),其中ns和ns1是q的两个道。在这种情况下,rmatch_augfun不被使用。 |
nlcc | 是否有核价关联 |
new_core_ps | 要求nlcc=t 如果.true。用贝塞尔函数伪化核电荷。 |
rcore | 核心电荷平滑的匹配半径(a.u.)。如果未指定,匹配半径由条件确定:rho_core(rcore) = 2* rho_ valence (rcore) |