Mat访问图像中每个像素的值

今天百度搜资料还搜到了自己的。。。《访问图像中每个像素的值》,这是之前写的了,用的也是2.0的风格IplImage*格式,不太适用后来Mat的格式,特此重写一篇。

以下例子源自《The OpenCV Tutorials --Release 2.4.2》2.2 How to scan images, lookup tables and time measurement with OpenCV


图像容器Mat

还是先看Mat的存储形式。Mat和Matlab里的数组格式有点像,但一般是二维向量,如果是灰度图,一般存放 <uchar>类型;如果是RGB彩色图,存放 <Vec3b>类型。
单通道灰度图数据存放格式:

多通道的图像中,每列并列存放通道数量的子列,如RGB三通道彩色图:

注意通道的顺序反转了:BGR。通常情况内存足够大的话图像的每一行是连续存放的,也就是在内存上图像的所有数据存放成一行,这中情况在访问时可以提供很大方便。可以用 isContinuous()函数来判断图像数组是否为连续的。

访问图像中的像素


高效的方法:C操作符[ ]

最快的是直接用C风格的内存访问操作符[]来访问:
  1. Mat& ScanImageAndReduceC(Mat& I, const uchar* const table)
  2. {
  3. // accept only char type matrices
  4. CV_Assert(I.depth() != sizeof(uchar));
  5. int channels = I.channels();
  6. int nRows = I.rows ;
  7. int nCols = I.cols* channels;
  8. if (I.isContinuous())
  9. {
  10. nCols *= nRows;
  11. nRows = 1;
  12. }
  13. int i,j;
  14. uchar* p;
  15. for( i = 0; i < nRows; ++i)
  16. {
  17. p = I.ptr<uchar>(i);
  18. for ( j = 0; j < nCols; ++j)
  19. {
  20. p[j] = table[p[j]];
  21. }
  22. }
  23. return I;
  24. }
Mat& ScanImageAndReduceC(Mat& I, const uchar* const table)
{
	// accept only char type matrices
	CV_Assert(I.depth() != sizeof(uchar));
	int channels = I.channels();
	int nRows = I.rows ;
	int nCols = I.cols* channels;
	if (I.isContinuous())
	{
		nCols *= nRows;
		nRows = 1;
	}
	int i,j;
	uchar* p;
	for( i = 0; i < nRows; ++i)
	{
		p = I.ptr<uchar>(i);
		for ( j = 0; j < nCols; ++j)
		{
			p[j] = table[p[j]];
		}
	}
	return I;
}
注意: 书中这段代码是有问题的,前面写成了
  1. int nRows = I.rows * channels;
  2. int nCols = I.cols;
int nRows = I.rows * channels;
int nCols = I.cols;
一般情况 isContinous为true,运行不会出错,但你可以注释掉那个if,会有访问越界的问题。
这种访问形式就是在每行定义一个指针,然后在内存上直接连续访问。如果整个数组在内存上都是连续存放的,那么只需要定义一个指针就可以访问所有的数据!如单通道的灰度图访问方式如下:
  1. uchar* p = I.data;
  2. for( unsigned int i =0; i < ncol*nrows; ++i)
  3. *p++ = table[*p];
uchar* p = I.data;
for( unsigned int i =0; i < ncol*nrows; ++i)
	*p++ = table[*p];

安全的方法:迭代器iterator

相比用指针直接访问可能出现越界问题,迭代器绝对是非常安全的方法:
  1. Mat& ScanImageAndReduceIterator(Mat& I, const uchar* const table)
  2. {
  3. // accept only char type matrices
  4. CV_Assert(I.depth() != sizeof(uchar));
  5. const int channels = I.channels();
  6. switch(channels)
  7. {
  8. case 1:
  9. {
  10. MatIterator_<uchar> it, end;
  11. for( it = I.begin<uchar>(), end = I.end<uchar>(); it != end; ++it)
  12. *it = table[*it];
  13. break;
  14. }
  15. case 3:
  16. {
  17. MatIterator_<Vec3b> it, end;
  18. for( it = I.begin<Vec3b>(), end = I.end<Vec3b>(); it != end; ++it)
  19. {
  20. (*it)[0] = table[(*it)[0]];
  21. (*it)[1] = table[(*it)[1]];
  22. (*it)[2] = table[(*it)[2]];
  23. }
  24. }
  25. }
  26. return I;
  27. }
Mat& ScanImageAndReduceIterator(Mat& I, const uchar* const table)
{
	// accept only char type matrices
	CV_Assert(I.depth() != sizeof(uchar));
	const int channels = I.channels();
	switch(channels)
	{
	case 1:
		{
			MatIterator_<uchar> it, end;
			for( it = I.begin<uchar>(), end = I.end<uchar>(); it != end; ++it)
				*it = table[*it];
			break;
		}
	case 3:
		{
			MatIterator_<Vec3b> it, end;
			for( it = I.begin<Vec3b>(), end = I.end<Vec3b>(); it != end; ++it)
			{
				(*it)[0] = table[(*it)[0]];
				(*it)[1] = table[(*it)[1]];
				(*it)[2] = table[(*it)[2]];
			}
		}
	}
	return I;
}
这里我们只定义了一个迭代器,用了一个for循环,这是因为在OpenCV里迭代器会访问每一列然后自动跳到下一行,不用管在内存上是否isContinous。另外要注意的是在三通道图像中我们定义的是 <Vec3b>格式的迭代器,如果定义成uchar,则只能访问到B即蓝色通道的值。
这种方式虽然安全,但是挺慢的,一会儿就知道了。

更慢的方法:动态地址计算

这种方法在需要连续扫描所有点的应用时并不推荐,因为它更实用与随机访问。这种方法最基本的用途是访问任意的某一行某一列:
  1. Mat& ScanImageAndReduceRandomAccess(Mat& I, const uchar* const table)
  2. {
  3. // accept only char type matrices
  4. CV_Assert(I.depth() != sizeof(uchar));
  5. const int channels = I.channels();
  6. switch(channels)
  7. {
  8. case 1:
  9. {
  10. for( int i = 0; i < I.rows; ++i)
  11. for( int j = 0; j < I.cols; ++j )
  12. I.at<uchar>(i,j) = table[I.at<uchar>(i,j)];
  13. break;
  14. }
  15. case 3:
  16. {
  17. Mat_<Vec3b> _I = I;
  18. for( int i = 0; i < I.rows; ++i)
  19. for( int j = 0; j < I.cols; ++j )
  20. {
  21. _I(i,j)[0] = table[_I(i,j)[0]];
  22. _I(i,j)[1] = table[_I(i,j)[1]];
  23. _I(i,j)[2] = table[_I(i,j)[2]];
  24. }
  25. I = _I;
  26. break;
  27. }
  28. }
  29. return I;
  30. }
Mat& ScanImageAndReduceRandomAccess(Mat& I, const uchar* const table)
{
	// accept only char type matrices
	CV_Assert(I.depth() != sizeof(uchar));
	const int channels = I.channels();
	switch(channels)
	{
	case 1:
		{
			for( int i = 0; i < I.rows; ++i)
				for( int j = 0; j < I.cols; ++j )
					I.at<uchar>(i,j) = table[I.at<uchar>(i,j)];
			break;
		}
	case 3:
		{
			Mat_<Vec3b> _I = I;

			for( int i = 0; i < I.rows; ++i)
				for( int j = 0; j < I.cols; ++j )
				{
					_I(i,j)[0] = table[_I(i,j)[0]];
					_I(i,j)[1] = table[_I(i,j)[1]];
					_I(i,j)[2] = table[_I(i,j)[2]];
				}
				I = _I;
				break;
		}
	}
	return I;
}
因为这种方法是为随机访问设计的,所以真的是奇慢无比。。。

减小颜色空间 color space reduction

现在来介绍下上述函数对每个元素的操作,也就是用table更改像素值。这里其实是做了个减小颜色空间的操作,这在一些识别之类的应用中会大大降低运算复杂度。类如uchar类型的三通道图像,每个通道取值可以是0~255,于是就有 256*256个不同的值。我们可以通过定义:
0~9 范围的像素值为 0
10~19 范围的像素值 为 10
20~29 范围的像素值为 20
。。。。。。
着这样的操作将颜色取值降低为 26*26*26 种情况。这个操作可以用一个简单的公式:

来实现,因为C++中int类型除法操作会自动截余。 类如 Iold=14; Inew=(Iold/10)*10=(14/10)*10=1*10=10;
在处理图像像素时,每个像素需要进行一遍上述计算也需要一定的时间花销。但我们注意到其实只有 0~255 种像素,即只有256种情况。进一步可以把256种计算好的结果提前存在表中 table 中,这样每种情况不需计算直接从 table 中取结果即可。
  1. int divideWith=10;
  2. uchar table[256];
  3. for (int i = 0; i < 256; ++i)
  4. table[i] = divideWith* (i/divideWith);
int divideWith=10; 
uchar table[256];
for (int i = 0; i < 256; ++i)
	table[i] = divideWith* (i/divideWith);
于是table[i]存放的是值为i的像素减小颜色空间的结果,这样也就可以理解上述方法中的操作:
  1. p[j] = table[p[j]];
p[j] = table[p[j]];

LUT : Look up table

OpenCV 很聪明的有个 LUT 函数就是针对这种 Look up talbe 的操作:
  1. Mat lookUpTable(1, 256, CV_8U);
  2. uchar* p = lookUpTable.data;
  3. for( int i = 0; i < 256; ++i)
  4. p[i] = table[i];
  5. for (int i = 0; i < times; ++i)
  6. LUT(I, lookUpTable, J);
Mat lookUpTable(1, 256, CV_8U);
uchar* p = lookUpTable.data;
for( int i = 0; i < 256; ++i)
	p[i] = table[i];
for (int i = 0; i < times; ++i)
	LUT(I, lookUpTable, J);

算法计时

为了验证几种方法的效率,可以用一个简单的计时和输出:
  1. double t;
  2. t = (double)getTickCount();
  3. t = 1000*((double)getTickCount() - t)/getTickFrequency();
  4. t /= times;
double t;
t = (double)getTickCount();
t = 1000*((double)getTickCount() - t)/getTickFrequency();
t /= times;

实验结果


原图:


降低颜色空间结果:


算法时间:


更清楚的时间对比表:


转载请注明出处:http://blog.csdn.net/xiaowei_cqu/article/details/7771760
实验代码下载:http://download.csdn.net/detail/xiaowei_cqu/4443761

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值