多人部件解析--Towards Real World Human Parsing: Multiple-Human Parsing in the Wild

Towards Real World Human Parsing: Multiple-Human Parsing in the Wild 
https://arxiv.org/abs/1705.07206

数据库没给出来啊!

本文针对当前 human parsing 数据库基本都是单人标记,而图像实际情况经常含有多人,这里我们提出了一个 Multiple-Human Parsing (MHP) 数据库,一般2-16人每张图像。接着我们提出了一个 Multiple-Human Parser (MH-Parser) 算法,在单人解析过程中同时考虑 global context and local cues,得到不错的效果。

先看数据库: 
这里写图片描述
这里写图片描述

各个数据库规模: 
这里写图片描述

Dataset statistics 
这里写图片描述

MH-Parser: 
这里写图片描述

MH-Parser 主要包含五个模块: 
1)Representation learner: 是一个CNN特征器,它提取的特征由后面几个模块共享,这里使用全卷积网络,以保持 spatial 信息

2)Global parser : 获取整幅图像的全局信息,生成 a semantic parsing map of the whole image

3) Candidate nominator:包括三个子模块 Region Proposal Network (RPN), a bounding box classifier 
and a bounding box regression,类似于 Faster RCNN,将每个人检测出来,得到矩形框

4)Local parser: 针对每个含有人的矩形框,进行 semantic labels 语义标记

5)Global-local aggregator :同时将 local parser and the global parser 网络中隐含的信息输入,用于单人矩形框的 semantic parsing predictions

4.2 Detect-and-parse baseline

检测阶段和解析阶段是分离的: 
In the detection stage, we use the representation learner and the candidate nominator as the detection 
model.

In the parsing stage, we use the representation learner and the local prediction as the 
the parsing model.

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述






图像分割"LIP: Self-supervised Structure-sensitive Learning and A New Benchmark for Human Parsing"

原创  2017年07月28日 14:59:43
  • 729

数据集:http://hcp.sysu.edu.cn/lip 
code: https://github.com/Engineering-Course/LIP_SSL
做人体部件分割,构建了一个新的数据库“LIP”,包含19个语义标记。在训练中融入结构信息,提升分割效果。 
人体分割具体应用:行人再认证,行为分析等。 
目前三个人体部件数据库ATR,Pascal-Person-Part和LIP复杂度比较: 
这里写图片描述

使用目前主流分割方法FCN-8S,SegNet,DeepLabV2和Attention机制在LIP数据库上的结果如下: 
这里写图片描述

目前方法主要的问题: 
1.背部图像左右胳膊容易混淆 
2.头部在图像中不存在时,效果最差,说明头部是人体分割的重要线索。 
3.对小物体检测不好,如鞋子

Self-supervised Structure-sensitive Learning 
论文提出的方法,使用人体结构指导训练,定义9个连接点建立姿态结构,分别是head, upper body, lower body, left arm,right arm, left leg, right leg, left shoe and right shoe区域的中心点,网络结构如下图所示。 
这里写图片描述 
对于每个分解的结果和对应的真值,获取连接点作为热度图,使用Euclidean距离评价生成的结构。之后使用连接点结构损失加权像素级分割损失,即structure-sensitive损失。 
即, 
这里写图片描述 
LStructure=LJointLParsing

实验结果 
与其他方法对比的结果图,可以分割出较小的物体,如鞋子,也可以解决左右胳膊混淆的问题。 
这里写图片描述


### 回答1: Faster R-CNN是一种基于区域建议网络(Region Proposal Networks,RPN)的物体检测算法,旨在实现实时物体检测。它通过预测每个区域是否含有物体来生成候选框,并使用卷积神经网络(CNN)来确定候选框中的物体类别。Faster R-CNN在提高检测精度的同时,也显著提高了检测速度。 ### 回答2: 在计算机视觉领域中,目标检测一直是热门研究的方向之一。近年来,基于深度学习的目标检测方法已经取得了显著的进展,并且在许实际应用中得到了广泛的应用。其中,Faster R-CNN 是一种基于区域建议网络(Region Proposal Networks,RPN)的目标检测方法,在检测准确率和速度之间取得了很好的平衡,能够实现实时目标检测。 Faster R-CNN 的基本框架由两个模块组成:区域建议网络(RPN)和检测模块。RPN 主要负责生成候选目标框,而检测模块则利用这些候选框完成目标检测任务。具体来说,RPN 首先在原始图像上以个尺度的滑动窗口为基础,使用卷积网络获取特征图。然后,在特征图上应用一个小型网络来预测每个位置是否存在目标,以及每个位置的目标边界框的坐标偏移量。最终,RPN 根据预测得分和位置偏移量来选择一部分具有潜在对象的区域,然后将这些区域作为候选框送入检测模块。 检测模块的主要任务是使用候选框来检测图像中的目标类别和位置。具体来说,该模块首先通过将每个候选框映射回原始图像并使用 RoI Pooling 算法来获取固定大小的特征向量。然后,使用全连接神经网络对这些特征向量进行分类和回归,以获得每个框的目标类别和精确位置。 相比于传统的目标检测方法,Faster R-CNN 具有以下优点:首先,通过使用 RPN 可以自动生成候选框,避免了手动设计和选择的过程;其次,通过共享卷积网络可以大大减少计算量,提高效率;最后,Faster R-CNN 在准确率和速度之间取得了很好的平衡,可以实现实时目标检测。 总之,Faster R-CNN 是一种高效、准确的目标检测方法,是深度学习在计算机视觉领域中的重要应用之一。在未来,随着计算机视觉技术的进一步发展,Faster R-CNN 这类基于深度学习的目标检测方法将会得到更广泛的应用。 ### 回答3: Faster R-CNN是一种结合了深度学习和传统目标检测算法的新型目标检测方法,旨在提高目标检测速度和准确率。Faster R-CNN采用了Region Proposal Network(RPN)来生成候选区域,并通过R-CNN网络对候选区域进行分类和定位。 RPN是一种全卷积神经网络,用于在图像中生成潜在的候选区域。RPN通常在卷积特征图上滑动,对每个位置预测k个候选区域和其对应的置信度得分。这样,对于输入图像,在不同大小和宽高比的Anchor上预测候选框,可以在计算上更有效率。 R-CNN网络利用卷积特征图作为输入,对RPN生成的候选区域进行分类和精确定位。与以前的目标检测方法相比,Faster R-CNN使用了共享卷积特征,使得整个检测网络可以端到端地进行训练和优化,缩短了训练时间,同时也更便于理解和改进。 Faster R-CNN不仅具有较高的准确性,还具有较快的检测速度。在各种基准测试中,Faster R-CNN与其他目标检测算法相比,都取得了优异的性能表现。总之,Faster R-CNN将目标检测引入了一个新的阶段,为实时目标检测提供了一个良好的基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值