【学习笔记】(数学)线性代数-矩阵的概念和特殊矩阵

本文详细介绍了矩阵的基本概念,包括矩阵的定义、表示方式以及特殊类型的矩阵,如方阵、零矩阵、对角矩阵、单位矩阵、数量矩阵、三角矩阵和梯形矩阵。通过对这些特殊矩阵的探讨,有助于深入理解线性代数中的矩阵理论。
摘要由CSDN通过智能技术生成

矩阵的相关概念

  • m × n m\times n m×n 个数按一定的次序排成的 m m m n n n 列的矩形数表成为 m × n m\times n m×n 的矩阵,简称矩阵(matrix)。
  • 横的各排称为矩阵的,竖的各列称为矩阵的
  • 元素为实数的称为实矩阵,一般情况下我们所讨论的矩阵均为实矩阵。
  • 1 行 n n n 列的矩阵称为行矩阵 n n n 行 1 列的矩阵称为列矩阵。

矩阵的表示

a i j a_{ij} aij 表示矩阵第 i i i 行第 j j j 列的元素。矩阵通常用大写字母 A , B , C A,B,C A,B,C 等表示,如下图为一般的矩阵:
A = ( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n a 31 a 32 ⋯ a 3 n ⋮ ⋮ ⋯ ⋮ a m 1 a m 2 ⋯ a m n ) A= \begin{pmatrix} a_{11}&a_{12}&\cdots &a_{1n}\\ a_{21}&a_{22}&\cdots &a_{2n}\\ a_{31}&a_{32}&\cdots &a_{3n}\\ \vdots&\vdots&\cdots&\vdots\\ a_{m1}&a_{m2}&\cdots&a_{mn} \end{pmatrix} A= a11a21a31am1a12a22a32am2a1na2na3namn
还可以简记为 A = ( a i j ) m × n A=(a_{ij})_{m\times n} A=(aij)m

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

oier_Asad.Chen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值