题目链接:http://poj.org/problem?id=2942
题目大意:
将若干个骑士分配到若干个桌子开会,
每个桌子的人数都是奇数。
若两个骑士相互憎恨,那么他们不能左右相邻坐。
如果一个骑士无法被安排在任何一个桌子,那么他将会被驱逐。
输出至少驱逐几个骑士。
算法:
双联通+奇圈。
首先,如果两个骑士可以相邻坐,就在它们之间连一条无向边。
然后求双联通分量。求双联通分量的方法可以参照BYVoid的《图的割点、桥与双连通分支》
对于每个双联通分量,其实实质上就是一个环(原路径+替代路径=环)。
现在有一个性质,如果一个双联通分量中含有一个奇环,那么这个双联通的所有点都位于奇数环中。
证明也很容易:
奇环从任两点都可以拆成两条路径,一条点数为奇数,一条点数为偶数。
这个双联通分支上的任何一点一定可以到达这个奇环上的任两点,
那么根据这个点到达这两个点的路径长的奇偶性,选择某一天路径拼接起来就可以了。
所以现在只要判断每个双联通分量是否含有奇环就可以了。
要判断块是否含有奇环,是不能通过点数判断的。
因为偶数点的块可以含有奇环:
奇数点的块也可以不含奇环:
一个图含有奇环的充要条件是它不是一个二分图。
判定二分图时,使用的是黑白染色法。
所以我们可以用判定二分图的方法判定奇圈。
当然,不含奇圈的联通块和单点的联通块就是必须驱逐的骑士了。
代码如下:
#include<cstdio>
#include<cstring>
#include<stack>
#include<queue>
#define MIN(x,y) ((x)<(y))?(x):(y)
using namespace std;
int E,n,head[1100];
bool flg[1100],map[1100][1100],vis[1100];
int dfs[1100],low[1100],clr[1100],p[1100],tot;
stack<int>ss;
struct
{
int u,v,nxt;
} edge[2100000];
void addedge(int u,int v)
{
edge[E].u=u;
edge[E].v=v;
edge[E].nxt=head[u];
head[u]=E++;
edge[E].u=v;
edge[E].v=u;
edge[E].nxt=head[v];
head[v]=E++;
}
bool judge(int end)
{
memset(clr,-1,sizeof(clr));
ss.pop();
while(!ss.empty())
{
int i=ss.top();
ss.pop();
clr[edge[i].u]=clr[edge[i].v]=0;
if(i==end)
break;
}
clr[edge[end].u]=1;
queue<int>qq;
qq.push(edge[end].u);
while(!qq.empty())
{
int u=qq.front();
qq.pop();
for(int i=head[u]; i!=-1; i=edge[i].nxt)
{
int v=edge[i].v;
if(clr[v]==-1)continue;
else if(clr[v]==clr[u])return true;
else if(!clr[v])
{
clr[v]=clr[u]%2+1;
qq.push(v);
}
}
}
return false;
}
void dfst(int u)
{
low[u]=dfs[u]=tot++;
for(int i=head[u]; i!=-1; i=edge[i].nxt)
{
int v=edge[i].v;
if(dfs[v]==-1)
{
ss.push(i);
p[v]=u;
dfst(v);
low[u]=MIN(low[u],low[v]);
if(p[u]!=-1)
{
if(dfs[u]<=low[v]&&judge(i))
{
for(int j=0; j<n; j++)
{
if(clr[j]!=-1)
{
flg[j]=true;
}
}
}
}
else
{
int j=head[u];
int pre=edge[j].v;
for(; j!=-1; j=edge[j].nxt)
{
if(edge[j].v!=pre)
break;
}
if(j!=-1&&judge(i))
{
for(int k=0; k<n; k++)
{
if(clr[k]!=-1)
{
flg[k]=true;
}
}
}
}
}
else
{
if(p[u]!=v)
low[u]=MIN(low[u],dfs[v]);
if(dfs[v]<dfs[u])
ss.push(i);
}
}
}
int main()
{
int m;
while(~scanf("%d%d",&n,&m)&&(n||m))
{
memset(map,0,sizeof(map));
memset(head,-1,sizeof(head));
memset(flg,0,sizeof(flg));
memset(dfs,-1,sizeof(dfs));
E=0;
while(m--)
{
int u,v;
scanf("%d%d",&u,&v);
u--;
v--;
map[u][v]=map[v][u]=1;
}
for(int u=0; u<n; u++)
for(int v=u+1; v<n; v++)
if(!map[u][v])
addedge(u,v);
for(int u=0; u<n; u++)
{
if(dfs[u]!=-1)continue;
while(!ss.empty())
ss.pop();
tot=0;
p[u]=-1;
dfst(u);
}
int ans=0;
for(int i=0; i<n; i++)
if(!flg[i])ans++;
printf("%d\n",ans);
}
return 0;
}