POJ 2942: Knights of the Round Table

题目链接:http://poj.org/problem?id=2942


题目大意:

将若干个骑士分配到若干个桌子开会,

每个桌子的人数都是奇数。

若两个骑士相互憎恨,那么他们不能左右相邻坐。

如果一个骑士无法被安排在任何一个桌子,那么他将会被驱逐。

输出至少驱逐几个骑士。


算法:

双联通+奇圈。

首先,如果两个骑士可以相邻坐,就在它们之间连一条无向边。

然后求双联通分量。求双联通分量的方法可以参照BYVoid的《图的割点、桥与双连通分支》
对于每个双联通分量,其实实质上就是一个环(原路径+替代路径=环)。

现在有一个性质,如果一个双联通分量中含有一个奇环,那么这个双联通的所有点都位于奇数环中。

证明也很容易:

奇环从任两点都可以拆成两条路径,一条点数为奇数,一条点数为偶数。

这个双联通分支上的任何一点一定可以到达这个奇环上的任两点,

那么根据这个点到达这两个点的路径长的奇偶性,选择某一天路径拼接起来就可以了。


所以现在只要判断每个双联通分量是否含有奇环就可以了。


要判断块是否含有奇环,是不能通过点数判断的。

因为偶数点的块可以含有奇环:



奇数点的块也可以不含奇环:



一个图含有奇环的充要条件是它不是一个二分图。

判定二分图时,使用的是黑白染色法。

所以我们可以用判定二分图的方法判定奇圈。

当然,不含奇圈的联通块和单点的联通块就是必须驱逐的骑士了。


代码如下:

#include<cstdio>
#include<cstring>
#include<stack>
#include<queue>
#define MIN(x,y) ((x)<(y))?(x):(y)
using namespace std;

int E,n,head[1100];
bool flg[1100],map[1100][1100],vis[1100];
int dfs[1100],low[1100],clr[1100],p[1100],tot;
stack<int>ss;
struct
{
  int u,v,nxt;
} edge[2100000];
void addedge(int u,int v)
{
  edge[E].u=u;
  edge[E].v=v;
  edge[E].nxt=head[u];
  head[u]=E++;
  edge[E].u=v;
  edge[E].v=u;
  edge[E].nxt=head[v];
  head[v]=E++;
}

bool judge(int end)
{
  memset(clr,-1,sizeof(clr));
  ss.pop();
  while(!ss.empty())
    {
      int i=ss.top();
      ss.pop();
      clr[edge[i].u]=clr[edge[i].v]=0;
      if(i==end)
        break;
    }
  clr[edge[end].u]=1;
  queue<int>qq;
  qq.push(edge[end].u);
  while(!qq.empty())
    {
      int u=qq.front();
      qq.pop();
      for(int i=head[u]; i!=-1; i=edge[i].nxt)
        {
          int v=edge[i].v;
          if(clr[v]==-1)continue;
          else if(clr[v]==clr[u])return true;
          else if(!clr[v])
            {
              clr[v]=clr[u]%2+1;
              qq.push(v);
            }
        }
    }
  return false;
}

void dfst(int u)
{
  low[u]=dfs[u]=tot++;
  for(int i=head[u]; i!=-1; i=edge[i].nxt)
    {
      int v=edge[i].v;
      if(dfs[v]==-1)
        {
          ss.push(i);
          p[v]=u;
          dfst(v);
          low[u]=MIN(low[u],low[v]);
          if(p[u]!=-1)
            {
              if(dfs[u]<=low[v]&&judge(i))
                {
                  for(int j=0; j<n; j++)
                    {
                      if(clr[j]!=-1)
                        {
                          flg[j]=true;
                        }
                    }
                }
            }
          else
            {
              int j=head[u];
              int pre=edge[j].v;
              for(; j!=-1; j=edge[j].nxt)
                {
                  if(edge[j].v!=pre)
                    break;
                }
              if(j!=-1&&judge(i))
                {
                  for(int k=0; k<n; k++)
                    {
                      if(clr[k]!=-1)
                        {
                          flg[k]=true;
                        }
                    }
                }
            }
        }
      else
        {
          if(p[u]!=v)
            low[u]=MIN(low[u],dfs[v]);
          if(dfs[v]<dfs[u])
            ss.push(i);
        }
    }
}

int main()
{
  int m;
  while(~scanf("%d%d",&n,&m)&&(n||m))
    {
      memset(map,0,sizeof(map));
      memset(head,-1,sizeof(head));
      memset(flg,0,sizeof(flg));
      memset(dfs,-1,sizeof(dfs));
      E=0;
      while(m--)
        {
          int u,v;
          scanf("%d%d",&u,&v);
          u--;
          v--;
          map[u][v]=map[v][u]=1;
        }
      for(int u=0; u<n; u++)
        for(int v=u+1; v<n; v++)
          if(!map[u][v])
            addedge(u,v);
      for(int u=0; u<n; u++)
        {
          if(dfs[u]!=-1)continue;
          while(!ss.empty())
            ss.pop();
          tot=0;
          p[u]=-1;
          dfst(u);
        }
      int ans=0;
      for(int i=0; i<n; i++)
        if(!flg[i])ans++;
      printf("%d\n",ans);
    }
  return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值