数据分析---Numpy(三)

活动地址:CSDN21天学习挑战赛

前两篇地址点这里:
数据分析—Numpy(一)
数据分析—Numpy(二)

数组运算

广播机制(Broadcast)

定义

广播是numpy对不同形状的数组进行数值计算的方式, 对数组的算术运算通常在相应的元素上进行

数组形状相等

两个数组满足a.shape == b.shape,算术运算的结果就是两个数组对应位置上的元素

运算 数组形状不等

numpy将自动触发广播机制

# a.shape == b.shape情况:
import numpy as np 
 
a = np.array([1,2,3,4]) 
b = np.array([10,20,30,40]) 
c = a * b 
print (c)
# 当运算中的 2 个数组的形状不同时,numpy 将自动触发广播机制:
import numpy as np 
a = np.array([[ 0, 0, 0],
           [10,10,10],
           [20,20,20],
           [30,30,30]])
b = np.array([1,2,3])
print(a + b)

数组的算术运算

  • 数组和数运算

numpy的广播机制在算术运算过程中,加减乘除的值被广播到所有的元素上 示例

t1 = np.arange(24).reshape(6,4) 
t1+2 
t1*2
t1/2
t1-2
  • 数组和数组的运算

(1)同种形状的数组(对应位置进行计算操作)

如果两个数组 a 和 b 形状相同,即满足 a.shape == b.shape,那么 a*b 的结果就是 a 与 b
数组对应位相乘。这要求维数(ndim)相同,且各维度的长度(shape)相同

(2)不种形状的多维数组计算

行数相同,列数不同 行数不同,列数相同

(3)列数相同的一维数组和多维数组可以进行计算

  • 增强运算

增强运算符(+=,-=,*=,/=)就位以修改现有数组,而不是创建一个新数组

统计函数

含义函数
最大值:np.max()
最小值:np.min()
极值:np.ptp()
中位数:np.median()
求和:np. sum()
算术平均数:np.mean()
加权平均数:np.average()
标准差:np.std()
方差:np.var()
协方差:np.cov()
import numpy as np
a = np.random.randint(1,100,20)
print(a)
print(np.max(a))
print(np.min(a))
print(np.mean(a))
print(np.sum(a))
# ......

排序函数

  • numpy.sort(a, axis = -1, kind = None, order = None)

返回数组的排序副本

import numpy as np
a = np.random.randint(1,100,20)
print(a)
print(np.sort(a))
  • ndarray.sort(axis = -1, kind = None, order = None)

就地排序数组

  • numpy.argsort(a, axis = -1, kind = None, order = None)

返回将对数组进行排序的索引

条件筛选函数

  • numpy.argmax(a, axis = None, out = None)

返回沿轴的最大值的索引

  • numpy.argmin(a, axis = None, out = None)

返回沿轴的最小值的索引

  • numpy.where(条件[,x, y ])

根据条件从x或y中选择返回的元素,三元运算

  • numpy.extract(条件, arr)

返回满足某些条件的数组元素

7

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

霄卓io.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值