数据分析--检测异常样本方法

异常值检测是数据预处理的关键环节,对于模型效果和分析质量至关重要。经验法和概率统计方法如方差是常用的检测手段。经验丰富的分析师能直观发现问题,而统计方法中,基于方差的样本标准偏差可用于识别超出正态分布±3个方差的异常点。
摘要由CSDN通过智能技术生成

在建模或数据分析前,首先要做的事情就是数据预处理,数据预处理的好坏,很大程度上决定了模型或分析结果的好坏。其中,异常值(outliers)检测是整个数据预处理过程中,十分重要的一环。方法也是多种多样。

1、经验法,对行业数据比较了解情况数据分析师,能很快发现数据的问题,经常能发现一些数据异常,如果没有经验通过算法也不一定能发现。这也是有经验和没有经验的重要差别。

    a)总体检测,总规模、均值进行检测是否异常,与环比同期值、同比值变化阀值是否在合理范围内

    b)抽样检测,随机抽样样本,和真实值进行一一对比,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值