目录:
一、KCL与KVL
1、定义
1)基尔霍夫电流定律 2)基尔霍夫电压定律
2、例题
二、电压源、电流源、受控源性质
1、独立电源
1)任意电路元件与理想电压源Us并联 2)任意电路元件与理想电流源Is串联 3)电压源、电流源互换等效 4)T型到π型转换分析
2、受控电源
3、计算要点★
4、支路电流法
5、节点电压法
6、网孔电流法
7、叠加定理
8、戴维南与诺顿定理
9、例题
三、电压电流源的应用
1、电流源等效
2、电桥电路
3、双电源供电
四、阻抗和导纳、相量法
1、复数
2、电阻/电感/电容的阻抗
3、相量图(Phasor Diagram)★
4、复阻抗与复导纳
5、例题
五、正弦交流电路的功率
1、瞬时功率
2、平均功率
3、最大功率传输★
1)直流电源的最大功率 2)交流电源的最大功率
4、无功功率和视在功率
5、视在功率
6、功率因素
7、复功率
六、对称三相电路计算
1、三相电源与三相电路
七、线性电路的过渡分析
1、线性电路的过渡过程
1)稳态和暂态 2)换路 3)动态电路的初始条件
2、1阶电路的零输入响应
1)RC串联电路的零输入响应 2)RL串联电路的零输入响应
3、1阶电路的零状态响应
1)RC 电路的零状态响应 2)RL电路的零状态响应
附录
1、电子运动方向
本内容所使用的仿真软件使用方法:Multisim14.2、Proteus8.6 SP2,仿真原文件下载:电路原理分析的仿真实例。
一、KCL与KVL
1、定义
1)基尔霍夫电流定律
电路中任一个节点上,在任一时刻,流入节点的电流之和等于流出节点的电流之和。
通常规定,对参考方向背离(流出)节点的电流取正号,而对参考方向指向(流入)节点的电流取负号。广泛使用的参考方向的符号约定称之为无源符号约定。
对闭合曲面 S,有 i1+i2-i3 = 0A。若两部分电路只有一根线相连(1 或 5 或 6 其中一个),由 KCL 可知,该支路中无电流。
如图(b)所示电路,作闭合曲面 S,因只有一条支路穿出 S 面。根据 KCL,由于 i1、i2、i3 只能有一个且 i1+i2-i3 = 0A,故 i = 0。
2)基尔霍夫电压定律
沿着闭合回路所有元件两端的电势差(电压)的代数和等于零。
电流方向与巡回方向一致取正,电流方向与巡回方向相反取负;遇到电压降低的电源取正;遇到电阻上的电压降低(实际上习惯的电流是与巡回方向一致的),当然也取正。
从a开始定义为正,U1 与 U5 的下方为正(如图),此时 U4 要一并处理,U4 下方为正。那么:
U1+U2+U3-U4-U5 = 0V,-U3-Ux+U5+U4 = 0V。
2、例题
题1、已知 R1 = 2Ω,R2 = 4Ω,Us1 = 12V,Us2 = 10 V,Us3 = 6V,求 a 点电位 Va。
图1.2.1 KCL例题
本题 d 点为参考点,由 KCL 可知 i1 = 0,所以回路 A(蓝色框)各元件上流经的是同一个电流i;
由 KVL 列写方程 R1*i+Us3+R2*i-Us1 = 0V,代入己知的各电阻及理想电压源的数据,得 i = 1A;
求解电位 Va,就是求 a 点到参考点的电压,它是自 a 点沿任一条可以到“地”的路径而“走”到“地”,沿途各段电路电压的代数和,所以有 Va = Uab+Ubc+Ucd = 2*i+6+(-10) = 2Ω*1A+6V-10V = -2V。
图1.2.2 KCL例题仿真
题2、已知 I = 0.3A,求解电阻 R 的阻值。
解:
如图所示,c 点电压 = 0.3*20 = 6V,Uac = 12V-6V = 6V,I1 = 6V/15 = 0.4A
根据 KCL 得:I1 = I2+0.3A,I2+I3 = IR,解得 I2 = 0.1A
根据 KVL 从 a 点开始沿图上虚线得:12V-UR-2V-6V = 0,UR = 4V,注:电流方向与巡回方向相反取负
那么,I3 = (12V-4V)/20 = 0.4A,则 IR = 0.4A+0.1A = 0.5A
故 R = 4V/0.5A = 8Ω
二、电压源、电流源、受控源性质
1、独立电源
独立电源分为电压源与电流源,电源的参数有电压、电流、方向。
电压源(内阻为零,电压变化量 Δu = 0 相当于短路)与电流源或电阻并联,输出电压不变,如果所求参数与电流源、电阻无关,则电流源、电阻可以开路处理。
电流源(内阻无穷大,电流变化量 Δi = 0 相当于开路)与电压源或电阻串联,输出电流不变,如果所求参数与电压源、电阻无关,则电压源、电阻可以短路处理。
电压源的电压属性、电流源的电流属性是定值,不受外电路影响,浅显易懂的理解请移步:从伏安特性曲线到电压电流源。
因为与电源的定义矛盾,电压源不能短路,电流源不能开路;不同电压的电压源不能并联,不同电流的电流源不能串联;参数相同则合并成一个电源。
此外,电流源与电压源可以等效转换,一个电流源与电阻并联可以等效成一个电压源与电阻串联。电源互换等效在推广应用中要特别注意等效端子。
1)任意电路元件与理想电压源Us并联
任意电路元件包含理想电流源元件。
2)任意电路元件与理想电流源Is串联
任意电路元件包含理想电压源。
3)电压源、电流源互换等效
4)T型到π型转换电路分析
对于图 (a)、(b)电路,根据 KCL 得:i3 = i1+i2 ①
根据 KVL 从(b) 图1 点开始得:U12+U23-U13 = 0V,U12 = U13-U23
由(a) 图,根据 KVL,则有:U13 = R1*i1+R3*i3,U23 = R2*i2+R3*i3 ②
将 ① 式代入 ② 式,可得:U13 = (R1+R3)i1+R3*i2,U23 = R3*i1+(R2+R3)i2
2、受控电源
受控电源具有相应电源的属性,只是其参数受激励源控制,受控电源是非独立电源。这里的参数就包含方向,所以受控源标注的方向只是参考方向,实际方向由激励源控制。受控电压源与受控电流源进行等效变换时要保留激励源不变。
例1:求 ab 端开路电压 Uoc。
解:
设电流 I1 参考方向如图中所标,由 KCL,得 I1 = 8I+I = 9I
对回路 A 应用 KVL 列方程得 2I+2I1-20V = 0V
将代入式,解得 I1 = 9A
由欧姆定律得开路电压 Uoc = 2I1 = 2*9 = 18V
例2:求 ab 端的输出电阻 Ro。
解:
外施电压源u, 求电流 i; 外施电流源 i, 求电压 u(注意:所设 u、i 的参考方向对二端电路来说是关联的),则其等效电阻 Rab = u/i。
在ab端外施电流源 i, 设电压 u 使 u、i 对二端电路来说参考方向关联, 并设电流 i1、i2 参考方向如(b)图上所标。
u1 = 15*i1,i2 = u1/10
∴ i2 = (15/10)*i1 = 1.5*i1 又 i1+i2 = i
∴ i1 = (1/2.5)*i
由 KVL 列回路 A 的 KVL 方程:5*i+15*i1-u = 0
即 5*i+15*(1/2.5)*i = u
所以输出电阻:Ro = u/i = 11Ω
3、计算要点★
电源置零时电压源短路处理,电流源开路处理,受控源不能直接置零。
例题:简化电路并求解 Uab 的电压。
图2.3.1 电路简化例题
Is/4A 电流源开路处理,R1/10Ω 不起作用。V1/24V、V2/12V、V3/4V 电压源短路处理,R4/3Ω 不起作用。简化后的电路如图2.3.2 所示。
图2.3.2 变换后的电路
Vx = 4A*(6Ω//3Ω) = 8V,Uab = 8V+4V = 12V。
图2.3.3 例题仿真
电流参考方向确定后,电路中元件的电压降方向(+ → -)与电流参考方向一致的,称为关联方向;相反,则是非关联方向。
“元件”包含电源,而电动势的方向是负极指向正极,与电压方向相反,这里容易出错,要把电源看成元件!
在讨论元件功率问题时,关联方向的元件,功率为正是吸收功率;功率为负是发出功率。正值是得到,负值是付出,符合常理,思考很顺畅。而非关联方向正相反,别扭。
解题时先求出实际的电压、电流,功率的符号按关联方向赋值。
4、支路电流法
已知 R1 = 15Ω,R2 = 1.5Ω,R3 = 1Ω,Us1 = 15V,Us2 = 4.5V,Us3 = 9V。求电压 Uab 及各电源产生的功率。
图2.4.1 支路电流法例题
解:
设支路电流 i1、i2、i3 参考方向如图中所标。依 KCL列写节点 a 的电流方程为 i1+i3 = i2
选网孔作为独立回路,并设绕行方向于图上,由 KVL 列写网孔的电压方程分别为
网孔 15i1-i3 = 15V-9V
网孔 i3+1.5i2 = 9V-4.5V,解得 i1 = 0.5A,i2 = 2A,i3 = 1.5A
电压 Uab = -i3*1+Us3 = 7.5V
设电源 Us1、Us2、Us3 产生的功率分别为 Ps1、Ps2、Ps3,由求得的支路电流,可算得
Ps1 = Us1*i1 = 15*0.5 = 7.5W
Ps2 = -Us2*i2 = -4.5*2 = -9W
Ps3 = Us3*i3 = 9*1.5 = 13.5W
图2.4.2 例题仿真
5、节点电压法
节点电压法是以流入节点的电流代数和为零列方程的,基本规则如下:
自电导之和乘以节点电压,减去互电导乘以相邻节点电压,等于流入节点的电源电流代数和。
自电导:只要电阻的一端在节点上,电阻的倒数就是电导。互电导:电阻连接在两个节点之间。电流源内阻无穷大,电导为零。
受控源只是参数受激励源控制,其电源属性不变。必要时无伴电压源转换成两端电压是定值的电流源。
Proteus 仿真:
支路电流法和节点电压法典型例子:
本节内容引自:支路电流法和节点电压法 典例。
6、网孔电流法
网孔电流法是假设电流沿着网孔流动,电流的方向可以任意设定,可以预估一下真实的方向,尽量避免答案是负值,比较麻烦。
列方程时沿着网孔电流方向,网孔电流乘以网孔总电阻是正值,通过公共电阻的相邻网孔电流,方向相同取正值,反之取负值,电压源也是如此。电压源的代数和放在方程右边。
图2.6.1 网孔电流法例题
按网孔列写 KVL 方程如下:
网孔 A:R1*iA+R5*iA+R5*iB+R4*iA-R4*iC+Us4-Us1 = 0;
网孔 B:R2*iB+R5*iA+R5*iB+R6*iB+R6*iC-Us2 = 0;
网孔 C:R3*iC-R4*iA+R4*iC+R6*iC+R6*iB-Us4-Us3 = 0;
按未知量顺序排列并加以整理,同时将已知激励源也移至等式右端。这样整理改写上述 3 式得:
观察 (2.2-1) 式,可以看出:
iA 前的系数 (R1+R4+R5) 恰好是网孔 A 内所有电阻之和,称它为网孔 A 的自电阻,以符号 R11 表示。
iB 前的系数(+R5)是网孔 A 和网孔 B 公共支路上的电阻,称它为网孔 A 与网孔 B 的互电阻,以符号R12表示, 由于流过 R5 的网孔电流 iA、iB 方向相同,故R5 前为“+”号。
iC 前系数(-R4)是网孔 A 和网孔C 公共支路上的电阻,称它为网孔A 与网孔 C 的互电阻,以符号 R13表示,由于流经 R4 的网孔电流iA、iC 方向相反,故 R4 前取“-”号。
等式右端 Us1-Us4 表示网孔 A 中电压源的代数和,以符号 Us11 表示, 计算 Us11 时遇到各电压源的取号法则是,在巡行中先遇到电压源正极性端取负号,反之取正号。
用同样的方法可求出 (2.2-2)、(2.2-3) 式的自电阻、互电阻及网孔等效电压源,即:
7、叠加定理
叠加定理的概念即对于一个线性系统,一个含多个独立源的双边线性电路的任何支路的响应(电压或电流),等于每个独立源单独作用时的响应的代数和,此时所有其他独立源被替换成他们各自的阻抗。
简单来说在一个电路中,当电压源作用时,电流源为断路;当电流源作用时,电压源为通路。
例题:用叠加定理求如图2.7.1 所示电路中的电流 I,Us 为 18V。
图2.7.1 叠加定理例题
图中有一个电流源和一个电压源共同作用,我们需要使用叠加定理来计算电流中的I,电流 I 为电压源 Us 和电流源 Is 共同作用的结果,所以我们需要分析两种情况。
首先我们将电阻进行命名容易更好的来展示电流的方向,R1 = 3Ω,R2 = 4Ω,R3 = 6Ω。
第一种情况,当电压源 Us 作用时,Is为断路。我们可将电路简化为图2。
电流的方向为:从 Us 的正极→R1→R3→回到 Us 的负极。
根据中学的串联电路定理可求出I的大小,I = U/R = Us/(R1+R3) = 18V/(3Ω+6Ω) = 2A。
那么电流的走向:从上往下流,电流的大小为:2A。
图2.7.2 回路1
第二种情况,当电流源 Is 作用时, Us 为通路,我们可将电路简化为图2.7.3。
电流 Is 有两条线路,分别为:
①从Is出发→R2→R1→回到 Is
②从Is出发→R2→R3→回到 Is
根据并联电路分流定理我们可计算出I的大小,I = Is*(R1/(R1+R3)) = 3A*(3Ω/(3Ω+6Ω)) = 1A
那么电流的走向:从上往下流,和第一种情况下的电流方向一致。
图2.7.3 回路2
由上述两种情况我们可知,在电压源和电流源共同作用下电流 I 的方向都为从上往下流,那我们可将得出的 1、2 中电流I相加得到最终的结果。图2.7.1 中的电流 I = 2A+1A = 3A。
分析完上题后,下面假设电流 Is 方向相反,于是得到的电路如图2.7.4。
图2.7.4
我们依然需要做两种分析:
电压源作用时,依旧和图2 一致,I 的大小还是为 2A。
但电流源的作用就有些许的差别了,我们可以画出电流源作用的图2.7.5。
图2.7.5
电流 Is 有两条线路。
①从 Is 出发→R3→R2→回到 Is
②从 Is 出发→R1→R2→回到 Is
电流流经 R3 是与所求电流的方向为反向,那么我们求取得电流将为负值。
根据并联电路分流定理我们可计算出I的大小,I = -(Is*(R1/(R1+R3) = -(3A*(3Ω/(3Ω+6Ω)) = -1A
由两种情况我们可知,在电压源和电流源共同作用下电流I的方向都为从上往下流或从下往上流,可得出的 1、2 中电流 I 相加得到最终的结果。图2.7.4 中的电流 I = 2A+(-1A) = 1A。
温馨提示:在计算叠加定理时不只要考虑大小并且需要考虑方向。
8、戴维南与诺顿定理
可以将复杂的有源线性二端电路等效为一个电压源与电阻串联的电源模型。
图2.8.1 等效变换
电压源的电压等于有源二端网络 N 在负载开路时的电压 Uoc;串联电阻 R0 等于有源二端网络内所有独立电源置零(独立电压源短路、独立电流源开路)时,得到无源二端电路 N 的端口等效电阻。
图2.8.2 戴维南等效例题
根据题目:
(1)先求开路电压
电流回路只有两个,如图2.8.2。
第一个电流回路 I1 = 9V/(3Ω+6Ω) = 1A,
第二个电流回路 I2 = 2A,
所以 Uoc = -I2*4Ω+I1*6Ω+10V = -2A*4Ω+1A*6Ω+10V = 8V。
(2)再求等效电阻
将电压源短路,电流源开路,可得 3Ω 和 6Ω 并联,再与 10Ω、4Ω 串联,即 R0 = 10Ω+3Ω*6Ω/(3Ω+6Ω)+4Ω = 16Ω。
诺顿定理:可以将复杂的有源线性二端电路等效为一个电流源与电阻并联的电源模型。电流大小等于原电路短路时端口流过的电流,电阻也是等于全部独立源置 0 时的等效电阻。
9、例题
例1、求 b 点电位 Vb。
应用电阻并联等效、电压源互换为电流源等效,将(a)图等效为(b)图。再应用电阻并联等效与电流源并联等效,将(b)图等效为(c)图。 由(c)图应用分流公式求得:
例2、求电流 I。
应用任意元件(也可是任意二端电路)与理想电压源并联可等效为该电压源及电源互换等效,将(a)图等效为(b)图,再应用理想电压源串联等效,将(b)图等效为(c)图。由(c)图算得:
例3、求各参数。
解:
受控电流源的电流方向、两端的电压方向(极性)是由激励源控制的。图中标示的是参考电流方向。如图,设 2A 电流源电压为 U2 ,受控电流源电压为 U3:
u1 = 2 * 5 = 10V
I1 = 0.05 * u1 = 0.5A
U2 = u1 - 3 = 7V
U3 = 3 + 20 * I1 = 13V
各元件的功率:
电压源 P1 = - 1.5 * 3 = - 4.5W
电流源 P2 = - 2 * 7 = - 14W
受控源 P3 = - 0.5 * 13 = - 6.5W
三个电源共发出功率 25 瓦,电阻吸收功率 P = 2 * 10 + 0.5 * 0.5 * 20 = 25W。
例4、求如图所示电路节点电压 U1、U2、U3。
解:
由欧姆定律得:U1 = 2A*2Ω = 4V
对于回路 A 做 KVL: 4V-U2+U2-U3+i*1 = 4V 解得 U3 = i
对于回路 B 做 KVL: 2*I+U1-U2+U2-U3 = 4V 解得 U3 = 2I
∴i = 2I
对回路再做 KCL: 1+I = i 连立式解得:I = 1A,i = 2A
∴U3 = 2V
对于回路 C 做 KVL:2i+(4-U2)/2 = 1
∴U2 = 10V
最后得 U1 = 4V,U2 = 10V,U3 = 2V
例5、用节点分析法求图示电路中电压 U1、U2 和 U3。
解:列写节点方程
电路如图所示,假设流过电压源支路的电流为 I,则其节点方程如下:
补充方程:u3-u1 = 24V
联立求解可得:u1 = 8V,u2 = 0V,u3 = 32V。
例6:使用网孔电流法求下方电路中的电压 Uab。
设网孔电流 iA、iB 如图中所标,观察电路,应用方程通式列基本方程为:
由图可以看出控制量 Ux 仅与回路电流 iB 有关,故有辅助方程:
将上面 2 式化简整理,得:
解得:
所以:
例7:求 a、b 电压。
解:
通过右侧的方程可得 a ≈ 5.685,b ≈ 6.949,与上面的仿真结果相符。
三、电压电流源的应用
1、电流源等效
2、电桥电路
AB 支路为电源支路,CD 支路为桥路,试用支路电流法求电流 ig,并讨论电桥平衡条件。
对于节点 A i1+i2-i = 0
对于节点 C -i1+ig+i3 = 0
对于节点 D -i2-ig+i4 = 0
对于回路 -R1i1+R2i2-Rgig = 0
对于回路 -R3i3+R4i4+Rgig = 0
对于回路 R1i1+R3i3+Ri = us
解上述方程组,得:
当 ig = 0,即桥路上电流为零(或桥路两端电压:uCD = 0)时称该电桥达到平衡。由ig的表示式可知分母是有限值,因而仅当 R3 = R1*R4/R2,即 R1/R2 = R3/R4 时 ig = 0,这就是电桥平衡的条件。
电桥在电子电路中的应用:开尔文四线法与电桥(uΩ电阻检测)。
3、双电源供电
图3.3.1 双电源供电仿真
开关电源 V1 由 V1 与 D1 组成,开关电源 V2 由 V2 与 D2 组成,当 S1 闭合后,V1 已经不再给负载 R1、R2 供电,由 V2 供给。
四、阻抗和导纳、相量法
1、复数
在二维平面上的一个相量,乘以j逆时针旋转 90°,除以j或乘以-j顺时针旋转 90°;乘以 -1 正时针或逆时针旋转 180°。
2、电阻/电感/电容的阻抗
有关阻抗与导纳的内容请移步:电阻/电抗/阻抗/电导/电纳/导纳。
3、相量图(Phasor Diagrm)★
相量画法原则:
1)同频率正弦量的相量,才能表示在同一张相量图中
2)逆时针旋转,正角度增加的方向
3)选定一个参考相量(设其初相位为零,水平线方向)
相量 IL = 相量 IC+IR,Ldi/dt = 1/C∫idt+IR,即 jωL = 1/jωC+IR(jω 用相量替换掉瞬时值)。
4、复阻抗与复导纳
5、例题
例1:
注:如果ωL = 80R,那么UC = 2A*80R = 160V,此时元件上的电压大于电源的电压(交流电路)。
五、正弦交流电路的功率
1、瞬时功率
2、平均功率
1、三相电源与三相电路
七、线性电路的过渡分析
1、线性电路的过渡分析
1)稳态和暂态
在一定激励的情况下,任何系统的响应的状态都有相对稳定和不稳定两种状态。在电路中,达到稳定状态是指在给定条件下电路中电压、电流已达到稳定值。不稳定状态是指电压、电流随时间在发生动态变化。例如:电容、电感 的充电过程。
稳定状态(稳态):电路中所有的响应或是恒定不变,或是按周期规律变化的工作状态。
过渡过程(动态、暂态):在某个激励下,电路由一个稳态转变到另一个稳态的过程。这种转变一般说来不是即时完成的,需要一个过程,这个过程称为电路的过渡过程。
产生暂态的原因:
内因:电路为动态电路,即电路中含储能元件 L、C ,能量只能连续变化而不能跃变;
外因:存在外部激励,如电路换路,即开关通断、电源变化、元件参数变化等。
分析过渡过程的方法:电路方程是以电流、电压为变量的微分方程。因此,暂态的分析有两种方法:
时域分析法:以时间作为变量,直接求解微分方程的方法。
复频域分析法:采用积分变换求解微分方程的方法。例如通过拉普拉斯变换,将自变量转换为复频率变量。
2)换路
换路:电路受到新的激励,具体地讲如电路中支路的接通、切断、短路或电路参数的突然改变及电路连接方式改变的统称。在进行理论分析时,我们假设换路是即时完成的。定义以下三个时刻:
t = 0 表示换路时刻(计时起点);
t = 0- 表示换路前的一瞬间(换路尚未发生);
t = 0+ 表示换路后的一瞬间(换路已经发生)。
储能元件中能量的改变是需要时间的。即动态电路在换路后一般不能由原来的稳定状态立刻到达新的稳定状态。
图7.1.1 电容储能
图7.1.2 电感储能
在换路瞬间,当电容元件的电流为有限值时,电容电压一般不能跃变;当电感元件的电压为有限值时,电感电流一般不能跃变。
这就是动态电路的初始条件。
3)动态电路的初始条件
确定方法:
2、1阶电路的零输入响应
一阶电路:可用一阶微分方程来进行描述的电路。
零输入响应:没有外界电源激励,仅由储能元件初始储能所引起的响应。
1)RC串联电路的零输入响应
在图示电流、电压的参考方向下,由KVL得换路后的电路方程:
求得满足初始条件的微分方程的解,即电容的零输入响应电压、电流分别为:
当 t- > ∞ 时,Uc- > 0、i- > 0。
时间常数:一个很重要的概念。观察零输入响应表达式,在这里定义:
称τ为电路的时间常数。它的大小反映了电路过渡过程的进展速度,它是反映过渡过程特征的一个重要的物理量。
时间常数的意义:当 t = τ 时
时间常数就是按照指数规律衰减的量衰减到它的初始值的 36.8% 时所需时间。
理论上:放电要经历无限大时间才能结束,工程上认为:经过 3τ~5τ 时间过渡过程即告结束。
时间常数越大,衰减越慢,过渡过程持续的时间越长。RC 电路中,电阻 R 在电容 C 放电过程中消耗的全部能量为:
就是说:电容在放电过程中释放的电场能量全部转换为电阻消耗的能量(热能)。
2)RL串联电路的零输入响应
图示电路,原已处于稳态,t = 0 时开关 K 闭合。电流、电压的参考方向如图所示,由 KVL 得换路后的电路方程 :
显然,这是一阶常系数线性齐次常微分方程,它的通解为:
从而,求得满足初始条件的微分方程的解,即电感的零输入响应电压、电流分别为
换路后,电感电压和电流均按指数规律衰减到 0。其曲线如图所示。RL 电路的时间常数为:
称 τ 为 RL 电路的时间常数。同样它的大小反映了电路过渡过程的进展速度。时间常数越大,过渡过程持续的时间越长。
在电路过渡过程中,电感元件不断放出能量为电阻所消耗,最后,原来储存在电感中的磁场能量全部被电阻吸收而转换成热能。
3、1阶电路的零状态响应
零状态:电路中所有储能元件的初始状态都为零的情况:
零状态响应:零状态电路,由外施激励所引起的响应。
1)RC 电路的零状态响应
直流电压源 Us 通过电阻 R 对电容 C 充电,电路如图所示。在图示电流、电压的参考方向下,由 KVL 得换路后的电路方程:
显然,这是一个一阶常系数线性非齐次常微分方程,方程的解有两部分组成
第一部分为微分方程的特解:称为强制分量或稳态分量
第二部分为对应齐次方程的通解:称为自由分量或暂态分量
这个电路方程的通解是
将以下初始条件代入上式得积分常数
最后得到零状态响应的完全解为:
响应过程:电容电压 Uc 由零初始值开始以指数形式趋近于它的最终值,即直流电压源电压 Us,而电流在换路后瞬间,跃变到最大值,然后以此初始值开始按指数规律衰减到零。
电路接通直流电压源的过程也就是电源通过电阻对电容充电的过程。在充电过程中,电源输出的能量一部分转换成电场能量储存在电容中,一部分被电阻转换为热能消耗。
充电效率问题:
在充电过程中,电源提供的能量只有一半转换成电场能量储存于电容中,另一半则为电阻所消耗,也就是说,充电效率为有 50%。
2)RL电路的零状态响应
和 RC 电路类似,这仍是一个一阶常系数线性非齐次常微分方程,解仍由两部分组成
代入初始条件
电路响应过程:电感电流由零初始值开始以指数形式趋近于它的稳态值,而电压在换路后,电压达到最大值,并以此初始值开始按指数规律衰减到零。到达该值后,电压和电流不再变化,电感相当于短路,其电压为零,达到新的稳态。
此时,电感的磁场储能为
注意:直流激励下的 RC 及 RL 电路的零状态响应,若外加激励增加K倍,则其零状态响应也增加 K 倍,即零状态响应与外加激励成线性关系。
本节内容引自“第七讲 线性电路的过渡过程分析一”。
附录
1、电子运动方向
物质是由原子构成,原子又是由原子核和核外电子组成:因原子核(带正电)质量较大,不易运动;核外电子(带负电)质量很小(忽略不计),所以在电场力作用下,电子易移动。
电流有正负之分,正电流是电子的空穴在移动,而负电流则是电子在移动。区别就像抽水和压水造成水管的水流动一样。
但现在电流方向因前期的误解形成的俗成是指电子的“空穴”移动方向。所以电子运动方向就是所谓电流方向的反向。
电子的定向移动形成电流,电子移动的方向就是电流的方向。但是为了研究的方便,人们人为设置:正电荷的移动方向是电流的方向。所以电子的移动方向和电流的方向相反。
如上图,我们规定电流从电源正极流向电源负极,但实际上,由于自由电子带负电,在电场的作用下,自由电子其实是由电源负极向电源正极运动的。在交流电路中,随着电压高低的不同变化,电压方向的不停变化,自由电子在电路中按照一定的频率向两个方向移动。
可能有人会问,直流电有负极,交流电为什么没有负极?其实,零线就相当于交流电的“负极”。
在交流电路中,随着电压方向的不断变化,自由电子不停流入大地或流出大地,而大地拥有无穷正电荷,也拥有无穷负电荷。所以理论上来说,大地可接收无穷多的电荷,而大地的电位,永远是“零电位”。就像不管你向大海洒一杯水,还是一盆水,或者X吨水,大海的咸度不会因此而变化。
2、推荐书籍
于高山之巅,方见大河奔涌;于群峰之上,更觉长风浩荡。 觉得不错,动动发财的小手点个赞哦!