常数项级数
定义 ----------用到前面极限的一些定理,尤其是柯西准则,但是充分性没有给证明
还有柯西-布尼亚科夫斯基-施瓦茨不等式也没有给证明
证明:
https://baike.baidu.com/item/柯西—施瓦茨不等式/4699871
这里到最后会推导出泰勒公式,请务必认真学习
重要的例题:
+++++++++++++++++
基本性质: 这里都是用极限证明的
//但是会相差一个常数 这里呢有点像 一个函数的原函数
收敛数列子列收敛
https://blog.csdn.net/lihuadaiyuoo/article/details/83821794
性质四
================================
重点重点
++++++++++++++++++
单调有界
重要的
依旧很重要
++++++++++++++++
+++++++++++++
也是在p和1之间构造一个r证明收敛
这里和反常积分的收敛判断 很相似
思路都是构造一个收敛的数列去比较
++++++++++++++++++
也可以用柯西准则进行证明(上面),再利用柯西斯瓦茨不等式证明接下来的定理
++++++
绝对收敛和条件收敛
这里的构造非常厉害
重点:
===================
定理9很重要
+++++++++++++++++++
无穷级数的惩罚
++++++++++
幂级数
++++++
性质
++++++++
重要定理:
++++++
++++++
运算
===========+++++++
重要性质
+++++++++++++++++++++
补充:M判别法
一致收敛
在这里插入图片描述