DropNet: Reducing Neural Network Complexity via Iterative Pruning(论文阅读)

DropNet是一种迭代节点/滤波器剪枝方法,用于降低深度神经网络的复杂度。受彩票假设启发,它删除平均激活值最低的节点/滤波器。实验表明,即使移除高达90%的节点/滤波器,模型在MNIST和CIFAR数据集上的精度仍能保持。DropNet不需要特殊初始化,且在各种场景下展现出良好的稳定性和与Oracle相媲美的精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

说明

现代深度神经网络需要大量的计算时间和计算能力来训练和部署,这限制了它们在边缘设备上的应用。受彩票假设(Frankle&Carbin,2018)中迭代权重剪枝的启发,我们提出了一种迭代剪枝方法DropNet,它通过剪枝节点/滤波器来降低网络复杂度。DropNet迭代地删除所有训练样本中具有最低平均postactivation value的节点/滤波器。经验上,我们表明DropNet在不同的场景中都是稳定的,包括使用MNIST和CIFAR数据集的MLP和CNN。实验表明,高达90%的节点/滤波器可以被移除,而不会有任何明显的精度损失。即使在重新初始化权重和偏差的情况下,最终修剪后的网络也表现良好。DropNet还具有类似于Oracle的精确度,它贪婪地一次删除一个节点/过滤器,以最大限度地减少训练损失,从而突出其有效性。

贡献
  1. 提出的DropNet,是一种带重新初始化权重的迭代节点/滤波器剪枝方法,它迭代地删除所有训练样本(无论是分层的还是全局的)激活后平均值最低的节点/滤波器,从而降低了网络复杂度。
  2. 与几个基准指标相比,DropNet在广泛的场景中实现了有较好的鲁棒性。DropNet实现了与Oracle
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CV视界

如果感觉有用,可以打赏哦~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值