目录
说明
现代深度神经网络需要大量的计算时间和计算能力来训练和部署,这限制了它们在边缘设备上的应用。受彩票假设(Frankle&Carbin,2018)中迭代权重剪枝的启发,我们提出了一种迭代剪枝方法DropNet
,它通过剪枝节点/滤波器来降低网络复杂度。DropNet迭代地删除所有训练样本中具有最低平均postactivation value
的节点/滤波器。经验上,我们表明DropNet在不同的场景中都是稳定的,包括使用MNIST和CIFAR数据集的MLP和CNN。实验表明,高达90%的节点/滤波器可以被移除,而不会有任何明显的精度损失。即使在重新初始化权重和偏差的情况下,最终修剪后的网络也表现良好。DropNet还具有类似于Oracle的精确度,它贪婪地一次删除一个节点/过滤器,以最大限度地减少训练损失,从而突出其有效性。
贡献
- 提出的
DropNet
,是一种带重新初始化权重的迭代节点/滤波器剪枝方法,它迭代地删除所有训练样本(无论是分层的还是全局的)激活后平均值最低的节点/滤波器,从而降低了网络复杂度。 - 与几个基准指标相比,
DropNet
在广泛的场景中实现了有较好的鲁棒性。DropNet
实现了与Oracle
类