Dropout network, DropConnect network

本文介绍了Dropout和DropConnect两种深度学习正则化技术。Dropout通过在训练过程中随机关闭神经元来防止过拟合,而DropConnect则是随机置零权重参数。尽管两者在测试阶段都能进行近似平均,但它们主要适用于全连接层。这些技术受到中心极限定理的支持,但存在局限性,仅适用于特定类型的网络层。
摘要由CSDN通过智能技术生成

Notations

  • input v v v
  • output r r r
  • weight parameter W ∈ R d × m W \in \mathbb{R}^{d \times m} WRd×m
  • activation function a a a
  • mask m m m for vector and M M M for matrix

Dropout

  • Randomly set activations of each layer to zero with probability 1 − p 1-p 1p.
    r = m ∘ a ( W v ) , r = m \circ a(Wv), r=ma(Wv),
    m j ∼ Bernoulli ( p ) m_j \sim \text{\small Bernoulli}(p) mjBernoulli(p).
  • As many activation functions have the property that a ( 0 ) = 0 ) a(0)=0) a(0)=0), we have
    r = a ( m ∘ W v ) . r = a(m \circ Wv). r=a(m<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值