第T5周:运动鞋品牌识别

一、前期工作

我的环境:

● 语言环境:Python3.6.5
● 编译器:jupyter notebook
● 深度学习框架:TensorFlow2.6.2
● 数据集:运动鞋品牌数据集

  1. 设置GPU(如果使用的是CPU可以忽略这步)
from tensorflow       import keras
from tensorflow.keras import layers,models
import os, PIL, pathlib
import matplotlib.pyplot as plt
import tensorflow        as tf

gpus = tf.config.list_physical_devices("GPU")

if gpus:
    gpu0 = gpus[0]                                        #如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True)  #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0],"GPU")
    
gpus

代码输出(我的电脑只有CPU,所以输出的是空列表)

[]
  1. 导入数据
data_dir = "./T5/data/"

data_dir = pathlib.Path(data_dir)
data_dir

代码输出:

WindowsPath('T5/data')
  1. 查看数据
image_count = len(list(data_dir.glob('*/*/*.jpg')))

print("图片总数为:",image_count)

代码输出:

图片总数为: 578
roses = list(data_dir.glob('train/nike/*.jpg'))
PIL.Image.open(str(roses[0]))

代码输出:

在这里插入图片描述

二、数据预处理

  1. 加载数据

使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset中

● tf.keras.preprocessing.image_dataset_from_directory():是 TensorFlow 的 Keras 模块中的一个函数,用于从目录中创建一个图像数据集(dataset)。这个函数可以以更方便的方式加载图像数据,用于训练和评估神经网络模型。

测试集与验证集的关系:

  1. 验证集并没有参与训练过程梯度下降过程的,狭义上来讲是没有参与模型的参数训练更新的。
  2. 但是广义上来讲,验证集存在的意义确实参与了一个“人工调参”的过程,我们根据每一个epoch训练之后模型在valid data上的表现来决定是否需要训练进行early stop,或者根据这个过程模型的性能变化来调整模型的超参数,如学习率、batch_size等等。
  3. 因此,我们也可以认为,验证集也参与了训练,但是并没有使得模型去overfit验证集。
batch_size = 32
img_height = 224
img_width = 224

如果准备尝试 categorical_crossentropy损失函数,下面的代码遇到变动。

"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    "./T5/data/train/",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)

代码输出:

Found 502 files belonging to 2 classes.
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    "./T5/data/test/",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)

代码输出:

Found 76 files belonging to 2 classes.

我们可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。

class_names = train_ds.class_names
print(class_names)

代码输出:

['adidas', 'nike']
  1. 可视化数据
plt.figure(figsize=(20, 10))

for images, labels in train_ds.take(1):
    for i in range(20):
        ax = plt.subplot(5, 10, i + 1)

        plt.imshow(images[i].numpy().astype("uint8"))
        plt.title(class_names[labels[i]])
        
        plt.axis("off")

代码输出:
在这里插入图片描述

  1. 再次检查数据
for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break

代码输出:

(32, 224, 224, 3)
(32,)

● Image_batch是形状的张量(32,224,224,3)。这是一批形状224x224x3的32张图片(最后一维指的是彩色通道RGB)。
● Label_batch是形状(32,)的张量,这些标签对应32张图片

  1. 配置数据集

● shuffle() :打乱数据,关于此函数的详细介绍可以参考:https://zhuanlan.zhihu.com/p/42417456
● prefetch() :预取数据,加速运行。

prefetch()功能详细介绍:CPU 正在准备数据时,加速器处于空闲状态。相反,当加速器正在训练模型时,CPU 处于空闲状态。因此,训练所用的时间是 CPU 预处理时间和加速器训练时间的总和。prefetch()将训练步骤的预处理和模型执行过程重叠到一起。当加速器正在执行第 N 个训练步时,CPU 正在准备第 N+1 步的数据。这样做不仅可以最大限度地缩短训练的单步用时(而不是总用时),而且可以缩短提取和转换数据所需的时间。如果不使用prefetch(),CPU 和 GPU/TPU 在大部分时间都处于空闲状态:
在这里插入图片描述

使用prefetch()可显著减少空闲时间:
在这里插入图片描述
● cache() :将数据集缓存到内存当中,加速运行。

AUTOTUNE = tf.data.AUTOTUNE

train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

三、构建CNN网络

卷积神经网络(CNN)的输入是张量 (Tensor) 形式的 (image_height, image_width, color_channels),包含了图像高度、宽度及颜色信息。不需要输入batch size。color_channels 为 (R,G,B) 分别对应 RGB 的三个颜色通道(color channel)。在此示例中,我们的 CNN 输入的形状是 (224, 224, 3)即彩色图像。我们需要在声明第一层时将形状赋值给参数input_shape。

网络结构图:
在这里插入图片描述

"""
关于卷积核的计算不懂的可以参考文章:https://blog.csdn.net/qq_38251616/article/details/114278995

layers.Dropout(0.4) 作用是防止过拟合,提高模型的泛化能力。
关于Dropout层的更多介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/115826689
"""

model = models.Sequential([
    layers.experimental.preprocessing.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
    
    layers.Conv2D(16, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)), # 卷积层1,卷积核3*3  
    layers.AveragePooling2D((2, 2)),               # 池化层1,2*2采样
    layers.Conv2D(32, (3, 3), activation='relu'),  # 卷积层2,卷积核3*3
    layers.AveragePooling2D((2, 2)),               # 池化层2,2*2采样
    layers.Dropout(0.3),  
    layers.Conv2D(64, (3, 3), activation='relu'),  # 卷积层3,卷积核3*3
    layers.Dropout(0.3),  
    
    layers.Flatten(),                       # Flatten层,连接卷积层与全连接层
    layers.Dense(128, activation='relu'),   # 全连接层,特征进一步提取
    layers.Dense(len(class_names))               # 输出层,输出预期结果
])

model.summary()  # 打印网络结构

代码输出:

Model: "sequential_1"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
rescaling_1 (Rescaling)      (None, 224, 224, 3)       0         
_________________________________________________________________
conv2d_3 (Conv2D)            (None, 222, 222, 16)      448       
_________________________________________________________________
average_pooling2d_2 (Average (None, 111, 111, 16)      0         
_________________________________________________________________
conv2d_4 (Conv2D)            (None, 109, 109, 32)      4640      
_________________________________________________________________
average_pooling2d_3 (Average (None, 54, 54, 32)        0         
_________________________________________________________________
dropout_2 (Dropout)          (None, 54, 54, 32)        0         
_________________________________________________________________
conv2d_5 (Conv2D)            (None, 52, 52, 64)        18496     
_________________________________________________________________
dropout_3 (Dropout)          (None, 52, 52, 64)        0         
_________________________________________________________________
flatten_1 (Flatten)          (None, 173056)            0         
_________________________________________________________________
dense_2 (Dense)              (None, 128)               22151296  
_________________________________________________________________
dense_3 (Dense)              (None, 2)                 258       
=================================================================
Total params: 22,175,138
Trainable params: 22,175,138
Non-trainable params: 0
_________________________________________________________________

四、训练模型

在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:

● 损失函数(loss):用于衡量模型在训练期间的准确率。
● 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
● 指标(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。

1.设置动态学习率

ExponentialDecay函数:

tf.keras.optimizers.schedules.ExponentialDecay是 TensorFlow 中的一个学习率衰减策略,用于在训练神经网络时动态地降低学习率。学习率衰减是一种常用的技巧,可以帮助优化算法更有效地收敛到全局最小值,从而提高模型的性能。

主要参数:

●initial_learning_rate(初始学习率):初始学习率大小。
●decay_steps(衰减步数):学习率衰减的步数。在经过 decay_steps 步后,学习率将按照指数函数衰减。例如,如果 decay_steps 设置为 10,则每10步衰减一次。
●decay_rate(衰减率):学习率的衰减率。它决定了学习率如何衰减。通常,取值在 0 到 1 之间。
●staircase(阶梯式衰减):一个布尔值,控制学习率的衰减方式。如果设置为 True,则学习率在每个 decay_steps 步之后直接减小,形成阶梯状下降。如果设置为 False,则学习率将连续衰减。

initial_learning_rate的参数原来是0.1的,训练出来的数据太差了,就修改为0.001。initial_learning_rate也可以考虑其他值,如0.0001。

# 设置初始学习率
initial_learning_rate = 0.001

lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
        initial_learning_rate, 
        decay_steps=10,      # 敲黑板!!!这里是指 steps,不是指epochs
        decay_rate=0.92,     # lr经过一次衰减就会变成 decay_rate*lr
        staircase=True)

# 将指数衰减学习率送入优化器
optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)

model.compile(optimizer=optimizer,
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

注:这里设置的动态学习率为:指数衰减型(ExponentialDecay)。在每一个epoch开始前,学习率(learning_rate)都将会重置为初始学习率(initial_learning_rate),然后再重新开始衰减。计算公式如下:

learning_rate = initial_learning_rate * decay_rate ^ (step / decay_steps)

学习率大与学习率小的优缺点分析:

学习率大:

●优点:
○1、加快学习速率。
○2、有助于跳出局部最优值。

● 缺点:
○1、导致模型训练不收敛。
○2、单单使用大学习率容易导致模型不精确。

学习率小:

●优点:
○1、有助于模型收敛、模型细化。
○2、提高模型精度。
● 缺点:
○1、很难跳出局部最优值。
○2、收敛缓慢。

2.早停与保存最佳模型参数

EarlyStopping()参数说明:

● monitor: 被监测的数据。
● min_delta: 在被监测的数据中被认为是提升的最小变化, 例如,小于 min_delta 的绝对变化会被认为没有提升。
● patience: 没有进步的训练轮数,在这之后训练就会被停止。
● verbose: 详细信息模式。
● mode: {auto, min, max} 其中之一。 在 min 模式中, 当被监测的数据停止下降,训练就会停止;在 max 模式中,当被监测的数据停止上升,训练就会停止;在 auto 模式中,方向会自动从被监测的数据的名字中判断出来。
● baseline: 要监控的数量的基准值。 如果模型没有显示基准的改善,训练将停止。
● estore_best_weights: 是否从具有监测数量的最佳值的时期恢复模型权重。 如果为 False,则使用在训练的最后一步获得的模型权重。

from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping

epochs = 50

# 保存最佳模型参数
checkpointer = ModelCheckpoint('best_model.h5',
                                monitor='val_accuracy',
                                verbose=1,
                                save_best_only=True,
                                save_weights_only=True)

# 设置早停
earlystopper = EarlyStopping(monitor='val_accuracy', 
                             min_delta=0.001,
                             patience=20, 
                             verbose=1)
  1. 模型训练
history = model.fit(train_ds,
                    validation_data=val_ds,
                    epochs=epochs,
                    callbacks=[checkpointer, earlystopper])

代码输出:

Epoch 1/50
16/16 [==============================] - 20s 1s/step - loss: 4.4512 - accuracy: 0.5139 - val_loss: 0.6929 - val_accuracy: 0.5263

Epoch 00001: val_accuracy improved from -inf to 0.52632, saving model to best_model.h5
Epoch 2/50
16/16 [==============================] - 19s 1s/step - loss: 0.6954 - accuracy: 0.4701 - val_loss: 0.6931 - val_accuracy: 0.5000

Epoch 00002: val_accuracy did not improve from 0.52632
Epoch 3/50
16/16 [==============================] - 18s 1s/step - loss: 0.6884 - accuracy: 0.5319 - val_loss: 0.6767 - val_accuracy: 0.5000

Epoch 00003: val_accuracy did not improve from 0.52632
Epoch 4/50
16/16 [==============================] - 18s 1s/step - loss: 0.6862 - accuracy: 0.5199 - val_loss: 0.6581 - val_accuracy: 0.5000

Epoch 00004: val_accuracy did not improve from 0.52632
Epoch 5/50
16/16 [==============================] - 18s 1s/step - loss: 0.6574 - accuracy: 0.6335 - val_loss: 0.6314 - val_accuracy: 0.6316

Epoch 00005: val_accuracy improved from 0.52632 to 0.63158, saving model to best_model.h5
Epoch 6/50
16/16 [==============================] - 19s 1s/step - loss: 0.6192 - accuracy: 0.6614 - val_loss: 0.5802 - val_accuracy: 0.7237

Epoch 00006: val_accuracy improved from 0.63158 to 0.72368, saving model to best_model.h5
Epoch 7/50
16/16 [==============================] - 18s 1s/step - loss: 0.6033 - accuracy: 0.6693 - val_loss: 0.5764 - val_accuracy: 0.6447

Epoch 00007: val_accuracy did not improve from 0.72368
Epoch 8/50
16/16 [==============================] - 19s 1s/step - loss: 0.5572 - accuracy: 0.7211 - val_loss: 0.5298 - val_accuracy: 0.7500

Epoch 00008: val_accuracy improved from 0.72368 to 0.75000, saving model to best_model.h5
Epoch 9/50
16/16 [==============================] - 18s 1s/step - loss: 0.5211 - accuracy: 0.7490 - val_loss: 0.5181 - val_accuracy: 0.7500

Epoch 00009: val_accuracy did not improve from 0.75000
Epoch 10/50
16/16 [==============================] - 18s 1s/step - loss: 0.4765 - accuracy: 0.8028 - val_loss: 0.4839 - val_accuracy: 0.7895

Epoch 00010: val_accuracy improved from 0.75000 to 0.78947, saving model to best_model.h5
Epoch 11/50
16/16 [==============================] - 18s 1s/step - loss: 0.4127 - accuracy: 0.8187 - val_loss: 0.4794 - val_accuracy: 0.7500

Epoch 00011: val_accuracy did not improve from 0.78947
Epoch 12/50
16/16 [==============================] - 18s 1s/step - loss: 0.3681 - accuracy: 0.8327 - val_loss: 0.4527 - val_accuracy: 0.8158

Epoch 00012: val_accuracy improved from 0.78947 to 0.81579, saving model to best_model.h5
Epoch 13/50
16/16 [==============================] - 18s 1s/step - loss: 0.3432 - accuracy: 0.8506 - val_loss: 0.4303 - val_accuracy: 0.8421

Epoch 00013: val_accuracy improved from 0.81579 to 0.84211, saving model to best_model.h5
Epoch 14/50
16/16 [==============================] - 18s 1s/step - loss: 0.2996 - accuracy: 0.8884 - val_loss: 0.4180 - val_accuracy: 0.8421

Epoch 00014: val_accuracy did not improve from 0.84211
Epoch 15/50
16/16 [==============================] - 18s 1s/step - loss: 0.2735 - accuracy: 0.8785 - val_loss: 0.3857 - val_accuracy: 0.8289

Epoch 00015: val_accuracy did not improve from 0.84211
Epoch 16/50
16/16 [==============================] - 18s 1s/step - loss: 0.2690 - accuracy: 0.8805 - val_loss: 0.3939 - val_accuracy: 0.8289

Epoch 00016: val_accuracy did not improve from 0.84211
Epoch 17/50
16/16 [==============================] - 18s 1s/step - loss: 0.2406 - accuracy: 0.9024 - val_loss: 0.3862 - val_accuracy: 0.8421

Epoch 00017: val_accuracy did not improve from 0.84211
Epoch 18/50
16/16 [==============================] - 18s 1s/step - loss: 0.2200 - accuracy: 0.9263 - val_loss: 0.3869 - val_accuracy: 0.8421

Epoch 00018: val_accuracy did not improve from 0.84211
Epoch 19/50
16/16 [==============================] - 18s 1s/step - loss: 0.2014 - accuracy: 0.9363 - val_loss: 0.3959 - val_accuracy: 0.8289

Epoch 00019: val_accuracy did not improve from 0.84211
Epoch 20/50
16/16 [==============================] - 18s 1s/step - loss: 0.1836 - accuracy: 0.9482 - val_loss: 0.3774 - val_accuracy: 0.8421

Epoch 00020: val_accuracy did not improve from 0.84211
Epoch 21/50
16/16 [==============================] - 18s 1s/step - loss: 0.1804 - accuracy: 0.9442 - val_loss: 0.3853 - val_accuracy: 0.8289

Epoch 00021: val_accuracy did not improve from 0.84211
Epoch 22/50
16/16 [==============================] - 19s 1s/step - loss: 0.1754 - accuracy: 0.9442 - val_loss: 0.3813 - val_accuracy: 0.8421

Epoch 00022: val_accuracy did not improve from 0.84211
Epoch 23/50
16/16 [==============================] - 18s 1s/step - loss: 0.1754 - accuracy: 0.9462 - val_loss: 0.3638 - val_accuracy: 0.8289

Epoch 00023: val_accuracy did not improve from 0.84211
Epoch 24/50
16/16 [==============================] - 19s 1s/step - loss: 0.1734 - accuracy: 0.9422 - val_loss: 0.3694 - val_accuracy: 0.8421

Epoch 00024: val_accuracy did not improve from 0.84211
Epoch 25/50
16/16 [==============================] - 18s 1s/step - loss: 0.1618 - accuracy: 0.9582 - val_loss: 0.3692 - val_accuracy: 0.8421

Epoch 00025: val_accuracy did not improve from 0.84211
Epoch 26/50
16/16 [==============================] - 18s 1s/step - loss: 0.1590 - accuracy: 0.9482 - val_loss: 0.3790 - val_accuracy: 0.8158

Epoch 00026: val_accuracy did not improve from 0.84211
Epoch 27/50
16/16 [==============================] - 18s 1s/step - loss: 0.1566 - accuracy: 0.9562 - val_loss: 0.3768 - val_accuracy: 0.8289

Epoch 00027: val_accuracy did not improve from 0.84211
Epoch 28/50
16/16 [==============================] - 18s 1s/step - loss: 0.1477 - accuracy: 0.9502 - val_loss: 0.3695 - val_accuracy: 0.8421

Epoch 00028: val_accuracy did not improve from 0.84211
Epoch 29/50
16/16 [==============================] - 18s 1s/step - loss: 0.1483 - accuracy: 0.9562 - val_loss: 0.3682 - val_accuracy: 0.8421

Epoch 00029: val_accuracy did not improve from 0.84211
Epoch 30/50
16/16 [==============================] - 18s 1s/step - loss: 0.1403 - accuracy: 0.9482 - val_loss: 0.3721 - val_accuracy: 0.8421

Epoch 00030: val_accuracy did not improve from 0.84211
Epoch 31/50
16/16 [==============================] - 18s 1s/step - loss: 0.1414 - accuracy: 0.9622 - val_loss: 0.3734 - val_accuracy: 0.8421

Epoch 00031: val_accuracy did not improve from 0.84211
Epoch 32/50
16/16 [==============================] - 18s 1s/step - loss: 0.1338 - accuracy: 0.9681 - val_loss: 0.3661 - val_accuracy: 0.8421

Epoch 00032: val_accuracy did not improve from 0.84211
Epoch 33/50
16/16 [==============================] - 18s 1s/step - loss: 0.1386 - accuracy: 0.9562 - val_loss: 0.3669 - val_accuracy: 0.8421

Epoch 00033: val_accuracy did not improve from 0.84211
Epoch 00033: early stopping

五、模型评估

  1. Loss与Accuracy图
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

loss = history.history['loss']
val_loss = history.history['val_loss']

epochs_range = range(len(loss))
print(epochs_range)

plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

代码输出:

range(0, 33)

在这里插入图片描述

  1. 指定图片进行预测
# 加载效果最好的模型权重
model.load_weights('best_model.h5')
from PIL import Image
import numpy as np


img = Image.open("./T5/data/test/nike/1.jpg")  #这里选择你需要预测的图片
image = tf.image.resize(img, [img_height, img_width])

img_array = tf.expand_dims(image, 0) #/255.0  # 记得做归一化处理(与训练集处理方式保持一致)

predictions = model.predict(img_array) # 这里选用你已经训练好的模型
print("预测结果为:",class_names[np.argmax(predictions)])

代码输出:

预测结果为: adidas
  1. 随机指定图片进行预测
data_dir = "./T5/data/test/"

data_dir = pathlib.Path(data_dir)
data_dir

代码输出:

WindowsPath('T5/data/test')
import random

image_file = list(data_dir.glob('*/*.jpg'))

image_random=random.choice(image_file)

print("随机指定的图片:",image_random)

代码输出:

随机指定的图片: T5\data\test\adidas\18.jpg
img = Image.open(image_random)  #这里选择你需要预测的图片
image = tf.image.resize(img, [img_height, img_width])

img_array = tf.expand_dims(image, 0) #/255.0  # 记得做归一化处理(与训练集处理方式保持一致)

predictions = model.predict(img_array) # 这里选用你已经训练好的模型
print("预测结果为:",class_names[np.argmax(predictions)])

代码输出:

预测结果为: adidas
PIL.Image.open(str(image_random))

代码输出:
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值