电力电子论文中的正弦激励响应公式推导

论文推导计划

数学原理(正弦激励下的响应计算)
参考书:高等数学、工程数学、自动控制原理、电路原理

上一期(二阶微分方程求解)
二阶线性微分方程求解链接: 二阶线性微分方程求解


前言

对于阶跃激励下的电感电流和电容电压的响应计算已经介绍过了,这里将总结在阅读电力电子论文中关于正弦激励下的响应。

涉及以下内容:

  • 正弦激励下的暂态和稳态计算( L a p l a c e Laplace Laplace变换的应用)

一、基本的数学原理

电路理论中的 L a p l a c e Laplace Laplace变换理论(暂态解+稳态解)

L a p l a c e Laplace Laplace的微分性质可得
L [ f ′ ( t ) ] = s F ( s ) − f ( 0 ) ⇒ L [ L d i L ( t ) d t ] = s L i L ( s ) − L i L ( 0 ) = v L ( s ) \boldsymbol{\mathfrak{L}}[f'(t)]=sF(s)-f(0)\\ \Rightarrow \boldsymbol{\mathfrak{L}}[L\frac{\mathrm{d}i_L(t) }{\mathrm{d} t}] =sLi_L(s)-Li_L(0)=v_L(s) L[f(t)]=sF(s)f(0)L[LdtdiL(t)]=sLiL(s)LiL(0)=vL(s)
即,电感电压可以表示为如上形式。
同理,电容电压可以表示成
L [ f ′ ( t ) ] = s F ( s ) − f ( 0 ) ⇒ L [ C d u C ( t ) d t ] = s C u C ( s ) − C u C ( 0 ) = i C ( s ) ⇒ u C ( s ) = 1 s C i C ( s ) + 1 s u C ( 0 ) \boldsymbol{\mathfrak{L}}[f'(t)]=sF(s)-f(0)\\ \\ \Rightarrow \boldsymbol{\mathfrak{L}}[C\frac{\mathrm{d}u_C(t) }{\mathrm{d} t}] =sCu_C(s)-Cu_C(0)=i_C(s)\\ \\ \Rightarrow u_C(s)=\frac{1}{sC}i_C(s)+\frac{1}{s}u_C(0) L[f(t)]=sF(s)f(0)L[CdtduC(t)]=sCuC(s)CuC(0)=iC(s)uC(s)=sC1iC(s)+s1uC(0)
电阻元件则不变。
直流电源: V V V为常数
L [ V ] = V s \boldsymbol{\mathfrak{L}}[V]=\frac{V}{s} L[V]=sV
正弦电源: V = V sin ⁡ ( ω t + φ ) V=V\sin (\omega t+\varphi ) V=Vsin(ωt+φ)
L [ V ] = V [ ω cos ⁡ φ + s sin ⁡ φ ] s 2 + ω 2 \boldsymbol{\mathfrak{L}}[V]=\frac{V[\omega\cos\varphi+s\sin\varphi ]}{s^{2}+\omega^{2}} L[V]=s2+ω2V[ωcosφ+ssinφ]
求解步骤:

  • 首先求出初始解
  • 代入等效的拉氏变换后的电路元件
  • 用电路原理求解
  • 反变换为时域解

相量法(只可求稳态解)

二、具体应用

1.一阶RC电路的正弦激励

下图中,电容的容值为 C C C, 电阻的阻值为 R R R, 电压的时域表达式为 V = V sin ⁡ ( ω t + φ ) V=V\sin (\omega t+\varphi ) V=Vsin(ωt+φ),求电流和电容电压的表达式。

RC一阶电路

  • L a p l a c e Laplace Laplace变换

观察可得,开关S落下之前,电容中无电荷存贮,则无初始电压。
因此根据 L a p l a c e Laplace Laplace变换后的电路元件列写电路表达式则有
V ( s ) = R s U C ( s ) + U C ( s ) ⇒ U C ( s ) = V ( s ) R C s + 1 V(s)=RsU_C(s)+U_C(s) \\ \Rightarrow U_C(s) =\frac{V(s)}{RCs+1} V(s)=RsUC(s)+UC(s)UC(s)=RCs+1V(s)
其中, V ( s ) = V [ ω cos ⁡ φ + s sin ⁡ φ ] s 2 + ω 2 V(s)=\frac{V[\omega\cos\varphi+s\sin\varphi ]}{s^{2}+\omega^{2}} V(s)=s2+ω2V[ωcosφ+ssinφ]
因此 U C ( s ) U_C(s) UC(s)可求解为
U C ( s ) = V [ ω cos ⁡ φ + s sin ⁡ φ ] ( s 2 + ω 2 )( R C s + 1 ) = V ω cos ⁡ φ R C + V sin ⁡ φ s R C ( s 2 + ω 2 )( s + 1 R C ) = A \begin{aligned} &U_C(s)=\frac{V[\omega\cos\varphi+s\sin\varphi ]}{(s^{2}+\omega^{2})(RCs+1)}\\ &=\frac{\frac{V\omega\cos\varphi}{RC}+\frac{V\sin\varphi s}{RC} }{(s^{2}+\omega^{2})(s+\frac{1}{RC})} \\ &=A \end{aligned} UC(s)=s2+ω2)(RCs+1V[ωcosφ+ssinφ]=s2+ω2)(s+RC1RCcosφ+RCVsinφs=A
A A A可以写为
A = K 1 s − p 1 + K 2 s − p 2 + K 3 s − p 3 A = K 1 ( s − p 2 ) ( s − p 3 ) + K 2 ( s − p 1 ) ( s − p 3 ) + K 3 ( s − p 1 ) ( s − p 2 ) ( s − p 1 ) ( s − p 2 ) ( s − p 3 ) ⇒ V ω cos ⁡ φ R C + V sin ⁡ φ s R C = K 1 ( s − p 2 ) ( s − p 3 ) + K 2 ( s − p 1 ) ( s − p 3 ) + K 3 ( s − p 1 ) ( s − p 2 ) \begin{aligned} &A=\frac{K_1}{s-p_1}+\frac{K_2}{s-p_2}+\frac{K_3}{s-p_3}\\ &A=\frac{K_1(s-p_2)(s-p_3)+K_2(s-p_1)(s-p_3)+K_3(s-p_1)(s-p_2)}{(s-p_1)(s-p_2)(s-p_3)}\\ &\Rightarrow\frac{V\omega\cos\varphi}{RC}+\frac{V\sin\varphi s}{RC}=K_1(s-p_2)(s-p_3)+K_2(s-p_1)(s-p_3)+K_3(s-p_1)(s-p_2) \end{aligned} A=sp1K1+sp2K2+sp3K3A=(sp1)(sp2)(sp3)K1(sp2)(sp3)+K2(sp1)(sp3)+K3(sp1)(sp2)RCcosφ+RCVsinφs=K1(sp2)(sp3)+K2(sp1)(sp3)+K3(sp1)(sp2)
其中,
p 1 = − j ω , p 2 = j ω , p 3 = − 1 R C p_1=-j\omega, p_2=j\omega, p_3=-\frac{1}{RC} p1=,p2=,p3=RC1
p 1 = − j ω p_1=-j\omega p1=代入上式可得
V ω cos ⁡ φ R C + V sin ⁡ φ R C ( − j ω ) = K 1 ( − j ω − j ω ) ( − j ω + 1 R C ) ⇒ K 1 = V R C ω cos ⁡ φ + sin ⁡ φ ( − j ω ) ( − 2 j ω ) ( − j ω + 1 R C ) \begin{aligned} &\frac{V\omega\cos\varphi}{RC}+\frac{V\sin\varphi }{RC}(-j\omega)=K_1(-j\omega-j\omega)(-j\omega+\frac{1}{RC})\\ &\Rightarrow K_1=\frac{V}{RC}\frac{\omega\cos\varphi+\sin\varphi(-j\omega)}{(-2j\omega)(-j\omega+\frac{1}{RC})} \end{aligned} RCcosφ+RCVsinφ()=K1()(+RC1)K1=RCV(2)(+RC1)ωcosφ+sinφ()
p 2 = j ω p_2=j\omega p2=代入上式可得
V ω cos ⁡ φ R C + V sin ⁡ φ R C ( j ω ) = K 2 ( j ω + j ω ) ( j ω + 1 R C ) ⇒ K 2 = V R C ω cos ⁡ φ + sin ⁡ φ ( j ω ) ( 2 j ω ) ( j ω + 1 R C ) \begin{aligned} &\frac{V\omega\cos\varphi}{RC}+\frac{V\sin\varphi }{RC}(j\omega)=K_2(j\omega+j\omega)(j\omega+\frac{1}{RC})\\ &\Rightarrow K_2=\frac{V}{RC}\frac{\omega\cos\varphi+\sin\varphi(j\omega)}{(2j\omega)(j\omega+\frac{1}{RC})} \end{aligned} RCcosφ+RCVsinφ()=K2(+)(+RC1)K2=RCV(2)(+RC1)ωcosφ+sinφ()
p 3 = − 1 R C p_3=-\frac{1}{RC} p3=RC1代入上式可得
V ω cos ⁡ φ R C + V sin ⁡ φ R C ( − 1 R C ) = K 3 ( − 1 R C + j ω ) ( − 1 R C − j ω ) ⇒ K 3 = V R C ω cos ⁡ φ + sin ⁡ φ ( − 1 R C ) ( 1 R 2 C 2 + ω 2 ) \begin{aligned} &\frac{V\omega\cos\varphi}{RC}+\frac{V\sin\varphi }{RC}(-\frac{1}{RC})=K_3(-\frac{1}{RC}+j\omega)(-\frac{1}{RC}-j\omega)\\ &\Rightarrow K_3=\frac{V}{RC}\frac{\omega\cos\varphi+\sin\varphi(-\frac{1}{RC})}{(\frac{1}{R^2C^2}+\omega ^2)} \end{aligned} RCcosφ+RCVsinφ(RC1)=K3(RC1+)(RC1)K3=RCV(R2C21+ω2)ωcosφ+sinφ(RC1)
因此,根据 L a p l a c e Laplace Laplace反变换可得
u C ( t ) = V R C [ ω cos ⁡ φ + sin ⁡ φ ( − j ω ) ( − 2 j ω ) ( − j ω + 1 R C ) e − j ω t + ω cos ⁡ φ + sin ⁡ φ ( j ω ) ( 2 j ω ) ( j ω + 1 R C ) e j ω t + ω cos ⁡ φ + sin ⁡ φ ( − 1 R C ) ( 1 R 2 C 2 + ω 2 ) e − t R C ] \begin{aligned} u_C(t)= \frac{V}{RC}[\frac{\omega\cos\varphi+\sin\varphi(-j\omega)}{(-2j\omega)(-j\omega+\frac{1}{RC})}e^{-j\omega t}+\frac{\omega\cos\varphi+\sin\varphi(j\omega)}{(2j\omega)(j\omega+\frac{1}{RC})}e^{j\omega t}+\frac{\omega\cos\varphi+\sin\varphi(-\frac{1}{RC})}{(\frac{1}{R^2C^2}+\omega ^2)}e^{\frac{-t}{RC}}] \end{aligned} uC(t)=RCV[(2)(+RC1)ωcosφ+sinφ()et+(2)(+RC1)ωcosφ+sinφ()et+(R2C21+ω2)ωcosφ+sinφ(RC1)eRCt]
根据 E u l e r Euler Euler公式,有
ω cos ⁡ φ + sin ⁡ φ ( − j ω ) = ω e φ \omega\cos\varphi+\sin\varphi(-j\omega)=\omega e^\varphi ωcosφ+sinφ()=ωeφ
因此, u C ( t ) u_C(t) uC(t)可化简为
u C ( t ) = V R C [ e − j ( ω t + φ ) ( − 2 ω ) − j 2 R C + e j ( ω t + φ ) ( − 2 ω ) + j 2 R C + ω cos ⁡ φ + sin ⁡ φ ( − 1 R C ) ( 1 R 2 C 2 + ω 2 ) e − t R C ] u_C(t)= \frac{V}{RC} [\frac{e^{-j(\omega t+\varphi)}}{(-2\omega)-\frac{j2}{RC}}+ \frac{e^{j(\omega t+\varphi)}}{(-2\omega)+\frac{j2}{RC}}+ \frac{\omega\cos\varphi+\sin\varphi(-\frac{1}{RC})}{(\frac{1}{R^2C^2}+\omega ^2)}e^{\frac{-t}{RC}} ] uC(t)=RCV[(2ω)RCj2ej(ωt+φ)+(2ω)+RCj2ej(ωt+φ)+(R2C21+ω2)ωcosφ+sinφ(RC1)eRCt]
由于
V R C [ e − j ( ω t + φ ) ( − 2 ω ) − j 2 R C + e j ( ω t + φ ) ( − 2 ω ) + j 2 R C ]   = V R C 1 4 ω 2 + 4 R 2 C 2 [ ( ( − 2 ω ) + j 2 R C ) e − j ( ω t + φ ) + ( − 2 ω ) − j 2 R C ) e j ( ω t + φ ) ] = V R C 2 4 ω 2 + 4 R 2 C 2 [ − 2 ω cos ⁡ ( ω t + φ ) ) + 2 R C sin ⁡ ( ω t + φ ) ) ] = V R C 1 ω 2 + 1 R 2 C 2 [ − ω cos ⁡ ( ω t + φ ) ) + 1 R C sin ⁡ ( ω t + φ ) ) ] = − 1 ω C V R 2 + ( 1 ω C ) 2 [ R R 2 + ( 1 ω C ) 2 cos ⁡ ( ω t + φ ) + − 1 ω C R 2 + ( 1 ω C ) 2 sin ⁡ ( ω t + φ ) ] = − 1 ω C V R 2 + ( 1 ω C ) 2 sin ⁡ ( ω t + φ + ϕ ) \begin{aligned} & \frac{V}{RC} [\frac{e^{-j(\omega t+\varphi)}}{(-2\omega)-\frac{j2}{RC}}+ \frac{e^{j(\omega t+\varphi)}}{(-2\omega)+\frac{j2}{RC}} ]\\\ &=\frac{V}{RC}\frac{1}{4\omega^2+\frac{4}{R^2C^2}} [((-2\omega)+\frac{j2}{RC})e^{-j(\omega t+\varphi)}+(-2\omega)-\frac{j2}{RC})e^{j(\omega t+\varphi)}]\\ &=\frac{V}{RC}\frac{2}{4\omega^2+\frac{4}{R^2C^2}} [-2\omega\cos (\omega t+\varphi))+\frac{2}{RC}\sin (\omega t+\varphi))]\\ &=\frac{V}{RC}\frac{1}{\omega^2+\frac{1}{R^2C^2}} [-\omega\cos (\omega t+\varphi))+\frac{1}{RC}\sin (\omega t+\varphi))]\\ &=-\frac{1}{\omega C}\frac{V}{\sqrt {R^2+(\frac{1}{\omega C})^2}} [\frac{R}{\sqrt{R^2+(\frac{1}{\omega C})^2}}\cos(\omega t+\varphi)+ \frac{-\frac{1}{\omega C}}{\sqrt{R^2+(\frac{1}{\omega C})^2}}\sin(\omega t+\varphi) ]\\ &=-\frac{1}{\omega C}\frac{V}{\sqrt {R^2+(\frac{1}{\omega C})^2}}\sin(\omega t+\varphi+\phi) \end{aligned}  RCV[(2ω)RCj2ej(ωt+φ)+(2ω)+RCj2ej(ωt+φ)]=RCV4ω2+R2C241[((2ω)+RCj2)ej(ωt+φ)+(2ω)RCj2)ej(ωt+φ)]=RCV4ω2+R2C242[2ωcos(ωt+φ))+RC2sin(ωt+φ))]=RCVω2+R2C211[ωcos(ωt+φ))+RC1sin(ωt+φ))]=ωC1R2+(ωC1)2 V[R2+(ωC1)2 Rcos(ωt+φ)+R2+(ωC1)2 ωC1sin(ωt+φ)]=ωC1R2+(ωC1)2 Vsin(ωt+φ+ϕ)
其中,
tan ⁡ ϕ = − R C ω \tan \phi=-RC\omega tanϕ=RCω
同理,
V R C ω cos ⁡ φ + sin ⁡ φ ( − 1 R C ) ( 1 R 2 C 2 + ω 2 ) e − t R C = 1 ω C V R 2 + ( 1 ω C ) 2 [ R R 2 + ( 1 ω C ) 2 cos ⁡ ( φ ) + − 1 ω C R 2 + ( 1 ω C ) 2 sin ⁡ ( φ ) ] e − t R C   = 1 ω C V R 2 + ( 1 ω C ) 2 sin ⁡ ( φ + ϕ ) e − t R C \begin{aligned} &\frac{V}{RC}\frac{\omega\cos\varphi+\sin\varphi(-\frac{1}{RC})}{(\frac{1}{R^2C^2}+\omega ^2)}e^{\frac{-t}{RC}}\\ &=\frac{1}{\omega C}\frac{V}{\sqrt {R^2+(\frac{1}{\omega C})^2}}[\frac{R}{\sqrt{R^2+(\frac{1}{\omega C})^2}}\cos(\varphi)+ \frac{-\frac{1}{\omega C}}{\sqrt{R^2+(\frac{1}{\omega C})^2}}\sin(\varphi) ]e^{\frac{-t}{RC}}\\\ &=\frac{1}{\omega C}\frac{V}{\sqrt {R^2+(\frac{1}{\omega C})^2}}\sin(\varphi+\phi) e^{\frac{-t}{RC}} \end{aligned}  RCV(R2C21+ω2)ωcosφ+sinφ(RC1)eRCt=ωC1R2+(ωC1)2 V[R2+(ωC1)2 Rcos(φ)+R2+(ωC1)2 ωC1sin(φ)]eRCt=ωC1R2+(ωC1)2 Vsin(φ+ϕ)eRCt
总上所述, u C ( t ) u_C(t) uC(t)可解得为
1 ω C V R 2 + ( 1 ω C ) 2 sin ⁡ ( φ + ϕ ) e − t R C − 1 ω C V R 2 + ( 1 ω C ) 2 sin ⁡ ( ω t + φ + ϕ ) \frac{1}{\omega C}\frac{V}{\sqrt {R^2+(\frac{1}{\omega C})^2}}\sin(\varphi+\phi)e^{\frac{-t}{RC}}-\frac{1}{\omega C}\frac{V}{\sqrt {R^2+(\frac{1}{\omega C})^2}}\sin(\omega t+\varphi+\phi) ωC1R2+(ωC1)2 Vsin(φ+ϕ)eRCtωC1R2+(ωC1)2 Vsin(ωt+φ+ϕ)
传输电流为 i L ( t ) = C d u C ( t ) ) d t i_L(t)=C\frac{\mathrm{d} u_C(t))}{\mathrm{d} t} iL(t)=CdtduC(t))

i L ( t ) = − 1 ω R C V R 2 + ( 1 ω C ) 2 sin ⁡ ( φ + ϕ ) e − t R C − V R 2 + ( 1 ω C ) 2 cos ⁡ ( ω t + φ + ϕ ) i_L(t)=-\frac{1}{\omega RC }\frac{V}{\sqrt {R^2+(\frac{1}{\omega C})^2}} \sin(\varphi+\phi)e^{\frac{-t}{RC}} -\frac{V}{\sqrt {R^2+(\frac{1}{\omega C})^2}}\cos(\omega t+\varphi+\phi) iL(t)=ωRC1R2+(ωC1)2 Vsin(φ+ϕ)eRCtR2+(ωC1)2 Vcos(ωt+φ+ϕ)
观察可知,这两个微分方程的根的存在暂态分量和稳态分量。暂态分量是一个衰减的量。


总结和未来的工作

本内容展示了如何用 L a p l a c e Laplace Laplace理论求解正弦激励下的微分方程,以下内容是小结部分

  • 31
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

电力小圆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值