信号与系统(14)- 正弦稳态响应的求解过程

傅里叶级数和傅里叶变换,他们作用是将信号进行分解,其中傅里叶级数的本质是将周期信号分解为一系列复指数函数的和,而傅里叶变换的本质则将非周期信号分解为一系列复指数信号的积分,并且傅里叶变换 F ( j ω ) F(j\omega) F(jω)对应的是傅里叶级数中各个子信号的幅值 C n C_n Cn。关于傅里叶级数和傅里叶变换的区别和联系,在信号与系统(12)- 周期信号的傅里叶变换 有所讨论。

回顾之前提到的几个问题:

  1. 选取什么子信号将信号分解?
  2. 如何分解?
  3. 如何求得子信号的响应?
  4. 如何将子信号的响应叠加,进而求得原信号的响应?

上述问题中,关于第一个问题,选用了正弦信号或复指数信号将信号进行分解。而关于第二个问题,对于周期信号可以使用傅里叶级数分解,关于非周期信号可以使用傅里叶变换分解,那么将信号分解为子信号之后,如何求得子信号的响应就成为了下一个问题。下面将对这个问题进行讲述,即正弦稳态响应的求解

这部分内容属于电路分析课程中的内容,这里将选取重点进行回顾,为后续说明频域分析方法做准备。

1. 什么是复数?

1.1 复数的表示

A A A是一个复数,a和b分别是它的实部和虚部,则复数 A A A可以通过一下方式表示:

  • 直角坐标形式

即:
A = a + j b A = a+ jb A=a+jb
上式中的** j j j是虚数单位,即 j = − 1 j=\sqrt{-1} j=1 **。复数A的实部和虚部可以分别表示为:
R e ( A ) = a ,     I m ( A ) = b Re(A)=a, \space \space \space Im(A)=b Re(A)=a,   Im(A)=b

  • 通过复平面表示

如果将复数A的实部视为直角坐标的横轴,虚部看为直角坐标的纵轴,将这样的直角坐标系称为复平面,则复数A在复平面上的表示为:

由上图可知,这条有向线段的长度为复数A的模,记作 ∣ A ∣ \vert A \vert A,线段与实轴的夹角为幅角,记作 θ \theta θ,并且:
a = ∣ A ∣ c o s θ ,     b = ∣ A ∣ s i n θ a = \vert A\vert cos \theta,\space \space \space b=\vert A\vert sin \theta a=Acosθ,   b=Asinθ
因此复数A也可以表示为:
A = ∣ A ∣ c o s θ + j ∣ A ∣ s i n θ = ∣ A ∣ ( c o s θ + j s i n θ ) \begin{aligned} A &= \vert A\vert cos\theta + j\vert A \vert sin\theta \\&=\vert A \vert(cos\theta + jsin\theta) \end{aligned} A=Acosθ+jAsinθ=A(cosθ+jsinθ)
这种形式也称为三角形式

  • 通过指数表示

由欧拉公式:
e j θ = c o s θ + j s i n θ e^{j\theta}=cos\theta +jsin\theta ejθ=cosθ+jsinθ
因此 A = ∣ A ∣ ( c o s θ + j s i n θ ) A = \vert A \vert (cos\theta + jsin\theta) A=A(cosθ+jsinθ)可以写为:
A = ∣ A ∣ e j θ A = \vert A \vert e^{j\theta} A=Aejθ
上式即复数的指数形式

  • 通过极坐标表示

极坐标形式将体现复数A的模的大小和幅角,即:
A = ∣ A ∣ ∠ θ A = \vert A \vert \angle\theta A=Aθ
通过三角形式,可以确定幅值和幅角,即:
∣ A ∣ = a 2 + b 2 ,     θ = a r c t a n ( b a ) \vert A \vert = \sqrt{a^2+b^2},\space \space \space \theta = arctan(\frac{b}{a}) A=a2+b2 ,   θ=arctan(ab)

1.2复数的运算

  • 相等

对于三角坐标或指教坐标的形式,若两个复数的实部和虚部分别相等,则称这两个复数相等。对于极坐标的形式,若两个复数的幅值和幅角分别相等,则称这两个复数相等

  • 加减运算

复数的加减运算往往需要先将指数形式或复数形式转换为直角坐标形式再进行运算:

A 1 = a 1 + j b 1 A_1 = a_1 +jb_1 A1=a1+jb1 A 2 = a 2 + j b 2 A_2 = a_2+jb_2 A2=a2+jb2,则
A 1 ± A 2 = ( a 1 ± a 2 ) + j ( b 1 ± b 2 ) A_1 \pm A_2 = (a_1 \pm a_2)+j(b_1 \pm b_2) A1±A2=(a1±a2)+j(b1±b2)
复数的加减运算可以看为矢量的加减运算,通过平行四边形法则以及三角形法则在复平面中进行变换。

  • 乘法运算

若复数为直角坐标形式,即:
A 1 = a 1 + j b 1 ,   A 2 = a 2 + j b 2 A_1 = a_1 +jb_1,\space A_2 = a_2+jb_2 A1=a1+jb1 A2=a2+jb2
则:
A 1 A 2 = ( a 1 + j b 1 ) ( a 2 + j b 2 ) = ( a 1 a 2 − b 1 b 2 ) + j ( a 1 b 2 + a 2 b 1 ) \begin{aligned} A_1 A_2 &= (a_1 +jb_1)(a_2 +jb_2) \\&=(a_1a_2-b_1b_2)+j(a_1b_2+a_2b_1) \end{aligned} A1A2=(a1+jb1)(a2+jb2)=(a1a2b1b2)+j(a1b2+a2b1)
若复数为极坐标形式,即:
A 1 = ∣ A 1 ∣ ∠ θ ,    A 2 = ∣ A 2 ∣ ∠ θ A_1 = \vert A_1 \vert \angle\theta, \space \space A_2 = \vert A_2 \vert \angle\theta A1=A1θ,  A2=A2θ
则:
A 1 A 2 = ∣ A 1 ∣ e j θ 1 ∣ A 2 ∣ e j θ 2 = ∣ A 1 ∣ ∣ A 2 ∣ e j ( θ 1 + θ 2 ) = ∣ A 1 ∣ ∣ A 2 ∣ ∠ ( θ 1 + θ 2 ) \begin{aligned} A_1A_2 &= \vert A_1\vert e^{j\theta_1} \vert A_2\vert e^{j\theta_2} \\&=\vert A_1\vert \vert A_2\vert e^{j(\theta_1+\theta_2)} \\&=\vert A_1\vert \vert A_2\vert \angle(\theta_1+\theta_2) \end{aligned} A1A2=A1ejθ1A2ejθ2=A1A2ej(θ1+θ2)=A1A2(θ1+θ2)
即复数的乘法是幅度乘以幅度,相角加相角

  • 除法运算

若复数为直角坐标形式,即:
A 1 = a 1 + j b 1 ,   A 2 = a 2 + j b 2 A_1 = a_1 +jb_1,\space A_2 = a_2+jb_2 A1=a1+jb1 A2=a2+jb2
则:
A 1 A 2 = a 1 + j b 1 a 2 + j b 2 = a 1 a 2 + b 1 b 2 a 2 2 + b 2 2 + j a 2 b 1 − a 1 b 2 a 2 2 + b 2 2 \begin{aligned} \frac{A_1}{A_2}&=\frac{a_1 +jb_1}{a_2+jb_2} \\&=\frac{a_1a_2+b_1b_2}{a_2^2+b_2^2}+j\frac{a_2b_1-a_1b_2}{a_2^2+b_2^2} \end{aligned} A2A1=a2+jb2a1+jb1=a22+b22a1a2+b1b2+ja22+b22a2b1a1b2
若复数为极坐标形式,即:
A 1 = ∣ A 1 ∣ ∠ θ ,    A 2 = ∣ A 2 ∣ ∠ θ A_1 = \vert A_1 \vert \angle\theta, \space \space A_2 = \vert A_2 \vert \angle\theta A1=A1θ,  A2=A2θ
则:
A 1 A 2 = ∣ A 1 ∣ ∣ A 2 ∣ e j θ 1 e j θ 2 = ∣ A 1 ∣ ∣ A 2 ∣ e j ( θ 1 − θ 2 ) = ∣ A 1 ∣ ∣ A 2 ∣ ∠ ( θ 1 − θ 2 ) \begin{aligned} \frac{A_1}{A_2}&=\frac{\vert A_1 \vert}{\vert A_2 \vert}\frac{e^j\theta_1}{e^j\theta_2} \\&=\frac{\vert A_1 \vert}{\vert A_2 \vert}e^{j(\theta_1-\theta_2)} \\&=\frac{\vert A_1 \vert}{\vert A_2 \vert} \angle(\theta_1-\theta_2) \end{aligned} A2A1=A2A1ejθ2ejθ1=A2A1ej(θ1θ2)=A2A1(θ1θ2)
即复数的除法是幅度除以幅度,相角减相角

1.3 相量

相量法是复数这个数学概念在电路分析中的一个应用。如果说数学中使用向量可以表示正弦函数,那么在电学系统中,相量则可以表示一个特定频率下的正弦信号。

首先,对于一个正弦信号,如:
i = I m s i n ( ω t + φ i ) i=I_msin(\omega t +\varphi_i) i=Imsin(ωt+φi)
其中幅值 I m I_m Im,角频率 ω = 2 π f \omega=2\pi f ω=2πf,以及初始相位 φ i \varphi_i φi正弦量的三要素。初始相位即 t = 0 t=0 t=0时刻的相位,一般取值为 [ 0 , 18 0 ∘ ] [0,180^{\circ}] [0,180]

如果用复指数函数表示上述信号,则对于上述正弦信号,需取复指数函数的虚部,如下:
i = I m s i n ( ω t + φ i ) = I m ⋅ I m [ e j ( ω t + φ i ) ] = I m [ I m ⋅ e j ( ω t + φ i ) ] = I m [ 2 I e j φ i ⋅ e j ω t ] 若 令 I ˙ = I e j φ i , 则 = I m [ 2 I ˙ ⋅ e j ω t ] \begin{aligned} i&=I_msin(\omega t + \varphi_i) \\&=I_m\cdot Im[e^{j(\omega t + \varphi_i)}] \\&=Im[I_m\cdot e^{j(\omega t + \varphi_i)}] \\&=Im[\sqrt{2}Ie^{j\varphi_i}\cdot e^{j\omega t}] \\&若令\dot{I}=Ie^{j\varphi_i},则 \\&=Im[\sqrt{2}\dot{I}\cdot e^{j\omega t}] \end{aligned} i=Imsin(ωt+φi)=ImIm[ej(ωt+φi)]=Im[Imej(ωt+φi)]=Im[2 Iejφiejωt]I˙=Iejφi,=Im[2 I˙ejωt]
如果将 I ˙ = I e j φ i \dot{I}=Ie^{j\varphi_i} I˙=Iejφi记为
I ˙ = I ∠ φ i \dot{I} = I\angle\varphi_i I˙=Iφi
其中 I = I m 2 I = \frac{I_m}{\sqrt{2}} I=2 Im,是信号的有效值,即完成了对 i = I m s i n ( ω t + φ i ) i=I_msin(\omega t +\varphi_i) i=Imsin(ωt+φi)相量表示。

相量是用来表示除角频率之外,其余两个正弦量要素的方法,即通过相量表示正弦信号的幅值和初始相位。在多个正弦信号具有相同频率的前提下,相量的表示方法与信号具有一一对应的关系。但是相量并不是信号本身,如上述正弦电流信号,信号本身为 I m [ 2 I ˙ ⋅ e j ω t ] Im[\sqrt{2}\dot{I}\cdot e^{j\omega t}] Im[2 I˙ejωt],其中 I ˙ \dot{I} I˙只是可以代表这个特定频率的正弦信号而已。

通过相量,可以对电阻,电容电感等元件的电气特性进行表示,如下:

  • 电阻

设电阻R中流过正弦电流 i = 2 I s i n ( ω t + φ i ) i=\sqrt{2}Isin(\omega t +\varphi_i) i=2 Isin(ωt+φi)

则电阻两端的电压为:
u = R i = 2 R I s i n ( ω t + φ i ) = 2 U s i n ( ω t + φ u ) u=Ri = \sqrt{2}RI sin(\omega t+ \varphi_i) = \sqrt{2}Usin(\omega t +\varphi_u) u=Ri=2 RIsin(ωt+φi)=2 Usin(ωt+φu)
因此:
U = I R ,    φ i = φ u U = IR,\space \space \varphi_i=\varphi_u U=IR,  φi=φu
即电压与电流的相位相同,电压有效值和电流有效值满足欧姆定理。用相量表示为:
U ˙ = I ˙ R \dot{U}=\dot{I}R U˙=I˙R

  • 电容

设电容C中流过正弦电压 u = 2 U s i n ( ω t + φ u ) u=\sqrt{2}Usin(\omega t +\varphi_u) u=2 Usin(ωt+φu)

则流经电容的电流为:
i = C d d t u = 2 C U ω s i n ( ω t + φ u + π 2 ) i = C\frac{d}{dt}u = \sqrt{2}CU \omega sin(\omega t +\varphi_u +\frac{\pi}{2}) i=Cdtdu=2 CUωsin(ωt+φu+2π)
因此:
I = ω C U ,    φ i = φ u + π 2 I = \omega CU,\space \space \varphi_i = \varphi_u +\frac{\pi}{2} I=ωCU,  φi=φu+2π
即电容上的电流和电压是同频率的正弦量,电流有效值是电压有效值和 ω C \omega C ωC的乘积。电流的初相位领先电压 π 2 \frac{\pi}{2} 2π。用相量表示为:
I ˙ = j ω C U ˙ \dot{I}=j\omega C\dot{U} I˙=jωCU˙
其中电流领先的 π 2 \frac{\pi}{2} 2π通过叙述单位 j j j包含在上式中。

  • 电感

设电感C中流过正弦电流 i = 2 I s i n ( ω t + φ i ) i=\sqrt{2}Isin(\omega t +\varphi_i) i=2 Isin(ωt+φi)

则电感两端的电压为:
u = L d d t i = 2 L I ω s i n ( ω t + φ i + π 2 ) u = L\frac{d}{dt}i = \sqrt{2}LI \omega sin(\omega t +\varphi_i+\frac{\pi}{2}) u=Ldtdi=2 LIωsin(ωt+φi+2π)
因此:
U = ω L I ,    φ u = φ i + π 2 U = \omega LI,\space \space \varphi_u = \varphi_i +\frac{\pi}{2} U=ωLI,  φu=φi+2π
即电感上的电流和电压是同频率的正弦量,电压有效值是电流有效值和 ω L \omega L ωL的乘积。电压的初相位领先电流 π 2 \frac{\pi}{2} 2π。用相量表示为:
U ˙ = j ω L I ˙ \dot{U}=j\omega L\dot{I} U˙=jωLI˙
其中电压领先的 π 2 \frac{\pi}{2} 2π通过虚数单位 j j j包含在上式中。所以,相量可以同时表示幅值和初始相位信息,使用更加方便。

由于相量也是一个复数,因此,若有两个频率相同的正弦信号,则其加减乘除运算方式和复数的运算方式相同。计算加减运算时,将相量转化为直角坐标形式,计算乘除运算时,尽量使用极坐标形式,分分别对幅值和相角进行运算。

即,若有相量 U 1 ˙ = ∣ U 1 ∣ ∠ φ 1 \dot{U_1} = \vert U_1 \vert \angle \varphi_1 U1˙=U1φ1 U 2 ˙ = ∣ U 2 ∣ ∠ φ 2 \dot{U_2} = \vert U_2 \vert \angle \varphi_2 U2˙=U2φ2,则
直 角 坐 标 形 式 : U 1 ˙ = R e + j I m = ∣ U 1 ∣ c o s φ 1 + j ∣ U 1 ∣ s i n φ 1 U 2 ˙ = R e + j I m = ∣ U 2 ∣ c o s φ 2 + j ∣ U 2 ∣ s i n φ 2 加 减 运 算 : U 1 ˙ + U 2 ˙ = ( ∣ U 1 ∣ c o s φ 1 + ∣ U 2 ∣ c o s φ 1 ) + j ( ∣ U 1 ∣ s i n φ 2 + ∣ U 2 ∣ s i n φ 2 ) 除 运 算 : U 1 ˙ U 2 ˙ = ∣ U 1 ∣ ∣ U 2 ∣ ∠ ( φ 1 − φ 2 ) 乘 运 算 : U 1 ˙ U 2 ˙ = ∣ U 1 ∣ ∣ U 2 ∣ ∠ ( φ 1 + φ 2 ) \begin{aligned} 直角坐标形式:& \\&\dot{U_1} = Re +jIm = \vert U_1 \vert cos\varphi_1 +j\vert U_1 \vert sin\varphi_1 \\&\dot{U_2} = Re +jIm = \vert U_2 \vert cos\varphi_2 +j\vert U_2 \vert sin\varphi_2 \\加减运算:& \\&\dot{U_1}+\dot{U_2} = (\vert U_1 \vert cos\varphi_1 + \vert U_2 \vert cos\varphi_1)+j(\vert U_1 \vert sin\varphi_2 +\vert U_2 \vert sin\varphi_2) \\除运算:& \\&\frac{\dot{U_1}}{\dot{U_2}}=\frac{\vert U_1 \vert}{\vert U_2 \vert}\angle(\varphi_1 - \varphi_2) \\乘运算:& \\&\dot{U_1}\dot{U_2}=\vert U_1 \vert\vert U_2 \vert\angle(\varphi_1 + \varphi_2) \end{aligned} U1˙=Re+jIm=U1cosφ1+jU1sinφ1U2˙=Re+jIm=U2cosφ2+jU2sinφ2U1˙+U2˙=(U1cosφ1+U2cosφ1)+j(U1sinφ2+U2sinφ2)U2˙U1˙=U2U1(φ1φ2)U1˙U2˙=U1U2(φ1+φ2)
举例:设正弦电流 u = 2 × 10 s i n ( 314 t + 3 0 ∘ ) u=\sqrt{2}\times10sin(314 t +30^\circ) u=2 ×10sin(314t+30)流过一个0.3H的电感,求电感两端的电压 u u u

解:
I ˙ = 10 ∠ 3 0 ∘ U ˙ = j ω L I ˙ = 314 × 0.4 × 10 ∠ ( 3 0 ∘ + 9 0 ∘ ) = 1256 ∠ 12 0 ∘ u = 2 × 1256 s i n ( 314 t + 12 0 ∘ ) \begin{aligned} \dot{I} &= 10\angle 30^{\circ} \\\dot{U} &=j\omega L \dot{I} = 314\times 0.4 \times10\angle (30^{\circ}+90^{\circ}) = 1256\angle 120^{\circ} \\u&=\sqrt{2}\times1256 sin(314 t + 120^{\circ}) \end{aligned} I˙U˙u=1030=jωLI˙=314×0.4×10(30+90)=1256120=2 ×1256sin(314t+120)
上式中的 9 0 ∘ 90^{\circ} 90是通过虚数单位 j j j得到的。

2. 如何求正弦稳态响应?

2.1 阻抗

若一个系统内部不含有独立电流源和独立电压源,且系统为LTI系统,当它在正弦激励下处于稳态,则该系统的端口电压和电流一定是同频率的正弦量,如下图所示

应用相量法,端口的电压相量和电流相量的比值定义为端口的等效阻抗:
Z = U ˙ I ˙ = U I ∠ ( φ u − φ i ) = ∣ Z ∣ ∠ φ Z=\frac{\dot{U}}{\dot{I}}=\frac{U}{I}\angle(\varphi_u-\varphi_i)=\vert Z \vert \angle\varphi Z=I˙U˙=IU(φuφi)=Zφ
阻抗是一个复数,幅值为 ∣ Z ∣ \vert Z \vert Z,阻抗角为 φ = φ u − φ i \varphi=\varphi_u-\varphi_i φ=φuφi,也可以表示为直角坐标形式:
Z = R + j X Z = R+jX Z=R+jX
其中实部 R = ∣ Z ∣ c o s φ R = \vert Z \vert cos\varphi R=Zcosφ称为电阻,虚部$X = \vert Z \vert sin\varphi $称为电抗。并且
∣ Z ∣ = R 2 + X 2 ,    φ = a r c t a n X R \vert Z \vert = \sqrt{R^2 + X^2}, \space \space \varphi=arctan{\frac{X}{R}} Z=R2+X2 ,  φ=arctanRX
由实部 R R R,虚部 X X X和阻抗角 φ \varphi φ在复平面构成的三角形,称为阻抗三角形,如下图所示:

电阻、电容以及电感的阻抗分别为:
Z R = R Z L = j ω L Z C = 1 j ω C \begin{aligned} Z_R & = R \\Z_L &= j\omega L \\Z_C &= \frac{1}{j\omega C} \end{aligned} ZRZLZC=R=jωL=jωC1
电路定律如KVL,KCL以及欧姆定律对于相量法仍然适用,即
U ˙ = Z I ˙ U ˙ = U 1 ˙ + U 2 ˙ + U 3 ˙ + ⋯ I ˙ = I 1 ˙ + I 2 ˙ + I 3 ˙ + ⋯ \begin{aligned} &\dot{U} = Z \dot{I} \\&\dot{U} = \dot{U_1} + \dot{U_2} +\dot{U_3} + \cdots \\&\dot{I} = \dot{I_1} + \dot{I_2} +\dot{I_3} + \cdots \end{aligned} U˙=ZI˙U˙=U1˙+U2˙+U3˙+I˙=I1˙+I2˙+I3˙+

2.2 周期信号的正弦稳态响应

运用阻抗和相量的相关知识,可以很轻松求出电路的正弦稳态响应,通常来说包含下列步骤:

  1. 将电路中的元件使用阻抗进行表示,即对于电阻,电容和电感:

Z R = R Z L = j ω L Z C = 1 j ω C \begin{aligned} Z_R & = R \\Z_L &= j\omega L \\Z_C &= \frac{1}{j\omega C} \end{aligned} ZRZLZC=R=jωL=jωC1

  1. 使用向量形式的欧姆定律、KVL、KCL等列出方程。这些方程都是复数的代数方程
  2. 解方程,在写出所求电压或电流的瞬时值表达式。

下面举例说明:

**举例:**如RLC串联电路中激励 u s = 50 2 s i n ( 1000 t + 3 0 ∘ ) u_s = 50\sqrt{2}sin(1000t+30^\circ ) us=502 sin(1000t+30)V, R = 10 Ω R=10\Omega R=10Ω L = 10 m H L=10mH L=10mH C = 50 μ F C=50\mu F C=50μF,稳态电流 i ( t ) i(t) i(t) ,以及稳态电压 u c ( t ) u_c(t) uc(t)

  1. 用相量表示电源激励信号,以及电容、电阻和电感

激 励 信 号 u s ( t ) 的 相 量 形 式 为 : U s ˙ = 2 × 50 2 ∠ 3 0 ∘ = 50 ∠ 3 0 ∘ V 电 阻 的 阻 抗 形 式 为 : Z R = 10 Ω 电 容 的 阻 抗 形 式 为 : Z C = 1 j ω C = − j 1 1000 × 50 × 1 0 − 6 = − j 20 Ω 电 感 的 阻 抗 形 式 为 : Z L = j ω L = j 1000 × 10 × 1 0 − 3 = j 10 Ω \begin{aligned} 激励信号u_s(t)的相量形式为&:\dot{U_s}=\frac{\sqrt{2}\times 50}{\sqrt{2}}\angle30^\circ=50\angle30^\circ V \\电阻的阻抗形式为&:Z_R=10\Omega \\电容的阻抗形式为&:Z_C = \frac{1}{j\omega C}=-j\frac{1}{1000\times 50 \times10^{-6}}=-j20\Omega \\电感的阻抗形式为&:Z_L=j\omega L = j 1000\times 10 \times 10^{-3}=j10\Omega \end{aligned} us(t)Us˙=2 2 ×5030=5030VZR=10ΩZC=jωC1=j1000×50×1061=j20ΩZL=jωL=j1000×10×103=j10Ω

  1. 通过电路定律,如欧姆定律求解稳态电压 u c ( t ) u_c(t) uc(t)的相量表示 U C ˙ \dot{U_C} UC˙.

由 相 量 的 欧 姆 定 律 可 知 : U ˙ C = I ˙ ⋅ Z C 即 : U ˙ C = U ˙ s Z R + Z C + Z L ⋅ Z C = 50 ∠ 3 0 ∘ × ( − j 20 ) 10 + j 10 − j 20 化 简 得 : U ˙ C = 50 ∠ 3 0 ∘ × 20 ∠ − 90 ∘ 10 2 ∠ − 45 ∘ 根 据 之 前 提 到 的 复 数 或 相 量 的 运 算 法 则 : U ˙ C = 1000 ∠ − 6 0 ∘ 10 2 ∠ − 45 ∘ = 70.7 ∠ − 1 5 ∘ \begin{aligned} 由相量的欧姆定律可知&:\dot U_C = \dot I \cdot Z_C \\即&:\dot U_C = \frac{\dot U_s}{Z_R+Z_C+Z_L}\cdot Z_C = \frac{50\angle 30^\circ \times(-j20)}{10 + j10-j20} \\化简得&:\dot U_C = \frac{50\angle 30^\circ \times 20\angle{-90}^\circ}{10\sqrt{2}\angle{-45}^{\circ}} \\根据之前提到的复数或相量的运算法则&:\dot U_C = \frac{1000\angle{-60^\circ}}{10\sqrt{2}\angle{-45}^{\circ}}=70.7\angle{-15^\circ} \end{aligned} U˙C=I˙ZC:U˙C=ZR+ZC+ZLU˙sZC=10+j10j205030×(j20)U˙C=102 455030×2090U˙C=102 45100060=70.715

  1. 根据相量写出正弦时间函数:

由 于 输 入 的 正 弦 信 号 频 率 为 : ω = 100 因 此 : u C ( t ) = 70.7 × 2 s i n ( 1000 t − 1 5 ∘ ) 即 : u C ( t ) = 100 s i n ( 1000 t − 1 5 ∘ ) \begin{aligned} 由于输入的正弦信号频率为&:\omega=100 \\因此&:u_C(t) = 70.7\times\sqrt{2}sin(1000t-15^\circ) \\即&:u_C(t)=100sin(1000t-15^\circ) \end{aligned} ω=100uC(t)=70.7×2 sin(1000t15)uC(t)=100sin(1000t15)

2.3 周期性非正弦信号的正弦稳态响应

非周期信号的正弦稳态响应,其实就是将信号通过傅里叶级数,分解为一个个周期正弦信号,再通过求解周期信号的正弦稳态响应,利用LTI系统的叠加原理,求得最后的响应。具体步骤如下:

  1. 将周期性非正弦信号通过傅里叶级数进行分解,分解方法见信号与系统(8)- 复指数形式的傅里叶级数.
  2. 用相量表示各个分量电源激励信号,以及电容、电阻和电感
  3. 根据相量求出正弦时间函数各个正弦分量的正弦稳态响应。
  4. 将各个分量的正弦时间函数相加得到最终的稳态响应。

下面举例说明:一个频率为 f = 1 M H z f=1MHz f=1MHz的矩形波信号 u s u_s us通过下图1所示得滤波电路,矩形波波形如图2所示。已知 L = 0.318 m H , R = 1000 Ω , C = 79.58 p F , U = 10 V L=0.318mH, R=1000\Omega, C=79.58pF, U=10V L=0.318mH,R=1000Ω,C=79.58pF,U=10V,求输出信号 u o u_o uo

  1. 将周期性非正弦信号通过傅里叶级数进行分解

此信号的表达式为:
u s ( t ) = { 10 ,      0 + k T ≤ t < T 2 + k T − 10 ,      − T 2 + k T < t < 0 + k T u_s(t) = \left \{ \begin{aligned} 10,& \space \space\space \space0 +kT\leq t<\frac{T}{2}+kT \\-10,&\space \space\space \space -\frac{T}{2}+kT<t<0+kT \end{aligned} \right. us(t)=10,10,    0+kTt<2T+kT    2T+kT<t<0+kT
对上式进行傅里叶级数展开(展开到第3项)得:
u s ( t ) = 4 U π s i n ω t + 4 U 3 π s i n 3 ω t + 4 U 5 π s i n 5 ω t \begin{aligned} u_s(t) = \frac{4U}{\pi}sin\omega t +\frac{4U}{3\pi}sin3\omega t +\frac{4U}{5\pi}sin5\omega t \end{aligned} us(t)=π4Usinωt+3π4Usin3ωt+5π4Usin5ωt
u s 1 ( t ) = 4 U π s i n ω t u_{s1}(t)=\frac{4U}{\pi}sin\omega t us1(t)=π4Usinωt u s 1 ( t ) = 4 U 3 π s i n 3 ω t u_{s1}(t)=\frac{4U}{3\pi}sin3\omega t us1(t)=3π4Usin3ωt u s 1 ( t ) = 4 U 5 π s i n 5 ω t u_{s1}(t)=\frac{4U}{5\pi}sin5\omega t us1(t)=5π4Usin5ωt

  1. 用相量表示各个分量电源激励信号,以及电容、电阻和电感

对于 u s 1 ( t ) u_{s1}(t) us1(t)
激 励 信 号 u s 1 ( t ) 的 相 量 形 式 为 : U s 1 ˙ = 4 × 10 π 2 ∠ 0 ∘ = 40 π 2 ∠ 0 ∘ V 电 阻 的 阻 抗 形 式 为 : Z R = 1000 Ω 电 容 的 阻 抗 形 式 为 : Z C = 1 j ω C = − j 1 2 π × 1 × 1 0 6 × 79.58 × 1 0 − 12 = − j 2000 Ω 电 感 的 阻 抗 形 式 为 : Z L = j ω L = j 2 π × 1 × 1 0 6 × 0.318 × 1 0 − 3 = j 2000 Ω \begin{aligned} 激励信号u_{s1}(t)的相量形式为&:\dot{U_{s1}}=\frac{4\times 10}{\pi \sqrt{2}}\angle0^\circ=\frac{40}{\pi\sqrt2}\angle0^\circ V \\电阻的阻抗形式为&:Z_R=1000\Omega \\电容的阻抗形式为&:Z_C = \frac{1}{j\omega C}=-j\frac{1}{2\pi \times 1\times 10^{6}\times 79.58 \times10^{-12}}=-j2000\Omega \\电感的阻抗形式为&:Z_L=j\omega L = j 2\pi \times 1\times 10^{6}\times 0.318 \times 10^{-3}=j2000\Omega \end{aligned} us1(t)Us1˙=π2 4×100=π2 400VZR=1000ΩZC=jωC1=j2π×1×106×79.58×10121=j2000ΩZL=jωL=j2π×1×106×0.318×103=j2000Ω
对于 u s 2 ( t ) u_{s2}(t) us2(t)
激 励 信 号 u s 1 ( t ) 的 相 量 形 式 为 : U s 1 ˙ = 4 × 10 3 π 2 ∠ 0 ∘ = 40 3 π 2 ∠ 0 ∘ V 电 阻 的 阻 抗 形 式 为 : Z R = 1000 Ω 电 容 的 阻 抗 形 式 为 : Z C = 1 j 3 ω C = − j 1 3 × 2 π × 1 × 1 0 6 × 79.58 × 1 0 − 12 = − j 666.65 Ω 电 感 的 阻 抗 形 式 为 : Z L = j 3 ω L = j 3 × 2 π × 1 × 1 0 6 × 0.318 × 1 0 − 3 = j 5994.16 Ω \begin{aligned} 激励信号u_{s1}(t)的相量形式为&:\dot{U_{s1}}=\frac{4\times 10}{3\pi\sqrt2}\angle0^\circ=\frac{40}{3\pi\sqrt2}\angle0^\circ V \\电阻的阻抗形式为&:Z_R=1000\Omega \\电容的阻抗形式为&:Z_C = \frac{1}{j3\omega C}=-j\frac{1}{3\times2\pi \times 1\times 10^{6}\times 79.58 \times10^{-12}}=-j666.65\Omega \\电感的阻抗形式为&:Z_L=j3\omega L = j 3\times2\pi \times 1\times 10^{6}\times 0.318 \times 10^{-3}=j5994.16\Omega \end{aligned} us1(t)Us1˙=3π2 4×100=3π2 400VZR=1000ΩZC=j3ωC1=j3×2π×1×106×79.58×10121=j666.65ΩZL=j3ωL=j3×2π×1×106×0.318×103=j5994.16Ω
对于 u s 3 ( t ) u_{s3}(t) us3(t)
激 励 信 号 u s 1 ( t ) 的 相 量 形 式 为 : U s 1 ˙ = 4 × 10 5 π 2 ∠ 0 ∘ = 40 5 π 2 ∠ 0 ∘ V 电 阻 的 阻 抗 形 式 为 : Z R = 1000 Ω 电 容 的 阻 抗 形 式 为 : Z C = 1 j 5 ω C = − j 1 5 × 2 π × 1 × 1 0 6 × 79.58 × 1 0 − 12 = − j 400 Ω 电 感 的 阻 抗 形 式 为 : Z L = j 5 ω L = j 5 × 2 π × 1 × 1 0 6 × 0.318 × 1 0 − 3 = j 9990.3 Ω \begin{aligned} 激励信号u_{s1}(t)的相量形式为&:\dot{U_{s1}}=\frac{4\times 10}{5\pi\sqrt2}\angle0^\circ=\frac{40}{5\pi\sqrt2}\angle0^\circ V \\电阻的阻抗形式为&:Z_R=1000\Omega \\电容的阻抗形式为&:Z_C = \frac{1}{j5\omega C}=-j\frac{1}{5\times2\pi \times 1\times 10^{6}\times 79.58 \times10^{-12}}=-j400\Omega \\电感的阻抗形式为&:Z_L=j5\omega L = j 5\times2\pi \times 1\times 10^{6}\times 0.318 \times 10^{-3}=j9990.3\Omega \end{aligned} us1(t)Us1˙=5π2 4×100=5π2 400VZR=1000ΩZC=j5ωC1=j5×2π×1×106×79.58×10121=j400ΩZL=j5ωL=j5×2π×1×106×0.318×103=j9990.3Ω

  1. 根据相量求出正弦时间函数各个正弦分量的正弦稳态响应

对于 u s 1 ( t ) u_{s1}(t) us1(t)
由 相 量 的 欧 姆 定 律 可 知 : Z = Z R + Z C ∥ Z L = j ω L j ω C j ω L − j 1 ω C + R 根 据 K V L : U ˙ o 1 = U ˙ s 1 − U ˙ R 由 于 ω L = 1 ω C : 因 此 j ω L j ω C j ω L − j 1 ω C ⟶ ∞ ,   即 : Z C ∥ Z L ⟶ ∞ R 和 L C 网 络 串 联 , 当 L C 并 联 网 络 的 阻 抗 无 穷 大 时 : U ˙ R = 0 V 因 此 : U ˙ o 1 = U ˙ s 1 = 40 π 2 ∠ 0 ∘ = 9 ∠ 0 ∘ V \begin{aligned} 由相量的欧姆定律可知&:Z = Z_R + Z_C \parallel Z_L = \frac{\frac{j\omega L}{j\omega C}}{j\omega L - j\frac{1}{\omega C}}+R \\根据KVL&:\dot U_{o1} = \dot U_{s1}-\dot U_R \\由于\omega L = \frac{1}{\omega C}&:因此\frac{\frac{j\omega L}{j\omega C}}{j\omega L - j\frac{1}{\omega C}} \longrightarrow \infty,\space即:Z_C \parallel Z_L \longrightarrow \infty \\R和LC网络串联,当LC并联网络的阻抗无穷大时&:\dot U_R = 0V \\因此&:\dot U_{o1} = \dot U_{s1} = \frac{40}{\pi \sqrt2}\angle0^\circ = 9 \angle0^\circ V \end{aligned} KVLωL=ωC1RLCLCZ=ZR+ZCZL=jωLjωC1jωCjωL+R:U˙o1=U˙s1U˙RjωLjωC1jωCjωL, ZCZLU˙R=0VU˙o1=U˙s1=π2 400=90V
对于 u s 2 ( t ) u_{s2}(t) us2(t)
由 K V L 和 欧 姆 定 律 得 知 : Z = Z R + Z C ∥ Z L = j 3 ω L j 3 ω C j 3 ω L − j 1 3 ω C + R 且 : U ˙ o 2 = Z C ∥ Z L Z R + Z C ∥ Z L ⋅ U ˙ s 2 即 : U ˙ o 2 = j 3 ω L j 3 ω C j 3 ω L − j 1 3 ω C Z R + j 3 ω L j 3 ω C j 3 ω L − j 1 3 ω C ⋅ 40 3 π 2 ∠ 0 ∘ = − j 750 1000 − j 750 ⋅ 40 3 π 2 ∠ 0 ∘ 将 直 角 坐 标 转 换 为 直 角 坐 标 , 计 算 得 : U ˙ o 2 = 0.6 ∠ − 53. 1 ∘ ⋅ 40 3 π 2 ∠ 0 ∘ = 1.8 ∠ − 53. 1 ∘ V \begin{aligned} 由KVL和欧姆定律得知&:Z = Z_R + Z_C \parallel Z_L = \frac{\frac{j3\omega L}{j3\omega C}}{j3\omega L - j\frac{1}{3\omega C}}+R \\且&:\dot U_{o2} =\frac{Z_C \parallel Z_L}{Z_R + Z_C \parallel Z_L}\cdot \dot U_{s2} \\即&:\dot U_{o2} =\frac{\frac{\frac{j3\omega L}{j3\omega C}}{j3\omega L - j\frac{1}{3\omega C}}}{Z_R + \frac{\frac{j3\omega L}{j3\omega C}}{j3\omega L - j\frac{1}{3\omega C}}}\cdot \frac{40}{3\pi\sqrt2}\angle0^\circ = \frac{-j750}{1000-j750} \cdot \frac{40}{3\pi\sqrt2}\angle0^\circ \\将直角坐标转换为直角坐标,计算得&:\dot U_{o2} = 0.6\angle{-53.1^\circ}\cdot\frac{40}{3\pi \sqrt2}\angle0^\circ = 1.8\angle{-53.1^\circ}V \end{aligned} KVLZ=ZR+ZCZL=j3ωLj3ωC1j3ωCj3ωL+R:U˙o2=ZR+ZCZLZCZLU˙s2U˙o2=ZR+j3ωLj3ωC1j3ωCj3ωLj3ωLj3ωC1j3ωCj3ωL3π2 400=1000j750j7503π2 400U˙o2=0.653.13π2 400=1.853.1V
对于 u s 3 ( t ) u_{s3}(t) us3(t)
计 算 得 : U ˙ o 3 = 0.69 ∠ − 67. 4 ∘ V \begin{aligned} 计算得:\dot U_{o3}=0.69\angle{-67.4^\circ} V \end{aligned} U˙o3=0.6967.4V

  1. 将各个分量的正弦时间函数相加得到最终的稳态响应

由之前的求解步骤可知:
U ˙ o 1 = 9 ∠ 0 ∘ V U ˙ o 2 = 1.8 ∠ − 53. 1 ∘ V U ˙ o 3 = 0.69 ∠ − 67. 4 ∘ V \begin{aligned} \dot U_{o1} &= 9 \angle0^\circ V \\\dot U_{o2} &= 1.8\angle{-53.1^\circ}V \\\dot U_{o3}&=0.69\angle{-67.4^\circ} V \end{aligned} U˙o1U˙o2U˙o3=90V=1.853.1V=0.6967.4V
它们对应的正弦信号形式为:
u o 1 = 12.73 s i n ( ω t ) V u o 2 = 1.8 2 s i n ( 3 ω t − 53. 1 ∘ ) V u o 3 = 0.69 2 s i n ( 5 ω t − 67. 4 ∘ ) V \begin{aligned} u_{o1} &= 12.73sin(\omega t)V \\u_{o2} &= 1.8\sqrt2 sin(3\omega t -53.1^\circ)V \\u_{o3}&=0.69\sqrt2 sin(5\omega t -67.4^\circ)V \end{aligned} uo1uo2uo3=12.73sin(ωt)V=1.82 sin(3ωt53.1)V=0.692 sin(5ωt67.4)V
因此系统对激励信号 u s ( t ) u_s(t) us(t)的稳态响应为:
u o ( t ) = u o 1 + u o 2 + u o 3 = 12.73 s i n ( ω t ) + 1.8 2 s i n ( 3 ω t − 53. 1 ∘ ) + 0.69 2 s i n ( 5 ω t − 67. 4 ∘ ) \begin{aligned} u_o(t) &= u_{o1}+u_{o2}+u_{o3} \\&=12.73sin(\omega t)+1.8\sqrt2 sin(3\omega t -53.1^\circ)+0.69\sqrt2 sin(5\omega t -67.4^\circ) \end{aligned} uo(t)=uo1+uo2+uo3=12.73sin(ωt)+1.82 sin(3ωt53.1)+0.692 sin(5ωt67.4)

3. 求解正弦稳态响应的总结

通过上述两个例子可知,在求解周期非正弦信号的稳态响应时,其求解方法的关键是得到输入信号与输出信号的关系。如上述的第二个例子中:
U ˙ o i = Z C ∥ Z L Z R + Z C ∥ Z L ⋅ U ˙ s i \dot U_{oi} =\frac{Z_C \parallel Z_L}{Z_R + Z_C \parallel Z_L}\cdot \dot U_{si} U˙oi=ZR+ZCZLZCZLU˙si
这里输出和输入的关系为:
U ˙ o i U ˙ s i = Z C ∥ Z L Z R + Z C ∥ Z L = j 3 ω L j 3 ω C j 3 ω L − j 1 3 ω C Z R + j 3 ω L j 3 ω C j 3 ω L − j 1 3 ω C \frac{\dot U_{oi}}{\dot U_{si}} = \frac{Z_C \parallel Z_L}{Z_R + Z_C \parallel Z_L} =\frac{\frac{\frac{j3\omega L}{j3\omega C}}{j3\omega L - j\frac{1}{3\omega C}}}{Z_R + \frac{\frac{j3\omega L}{j3\omega C}}{j3\omega L - j\frac{1}{3\omega C}}} U˙siU˙oi=ZR+ZCZLZCZL=ZR+j3ωLj3ωC1j3ωCj3ωLj3ωLj3ωC1j3ωCj3ωL
U ˙ o i U ˙ s i \frac{\dot U_{oi}}{\dot U_{si}} U˙siU˙oi H ( j ω ) H(j\omega) H(jω)表示,称为系统函数。

回顾上述两个例子,则求解周期信号的稳态响应可以重新归结为:

  1. 通过输入与输出的关系,确定系统函数 H ( j ω ) H(j\omega) H(jω),并将系统函数使用极坐标形式表示。
  2. 将原信号进行傅里叶级数展开,得到组成原信号的各个子正弦信号,并将这些子正弦信号使用相量表示。
  3. 将各个子信号分别与系统函数相乘,计算时遵循幅度乘幅度,相角加相角的原则,得到各个子正弦信号的稳态响应。
  4. 将各个子正弦信号的稳态响应相加,得到最终的响应。

这一节内容属于回顾电路分析的内容,主要是为了引出系统函数,进而引出下一篇阐述的频域分析的相关概念。本篇中的例子何部分内容来源于清华大学出版社的《电路原理》,其余部分为原创。如有不当之处,请批评指正!谢谢!

  • 16
    点赞
  • 40
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: 正弦稳态电路是指交流电路中达到稳定状态后,电流和电压的波形均为正弦波。在正弦稳态电路中,最大功率的求解可以通过以下步骤进行: 1. 计算电路中的电阻值和电源电压,确定电路的基本参数。 2. 根据欧姆定律,计算电路中的电流。 3. 根据功率公式,计算电路中的瞬时功率,即 P=VI,其中 V 和 I 分别代表电压和电流。 4. 将瞬时功率表示为一个正弦函数,并使用三角函数的性质将其转化为一个含有相位角的函数。 5. 计算功率函数的最大值,即相位角为零时的功率值,此时电流和电压处于同相位,功率达到最大值。 6. 根据功率函数的最大值,计算电路中的最大功率。 需要注意的是,正弦稳态电路中的最大功率一般发生在电路中电阻值等参数固定的情况下,电源电压的变化会影响到电路中的电流和功率大小。 ### 回答2: 正弦稳态电路的最大功率求解思路如下: 1. 首先,我们需要知道正弦稳态电路中的各个元件的参数,包括电压源的电压和频率、电阻的阻值、电感的电感值、电容的电容值等。 2. 接下来,我们需要确定正弦稳态电路中的电流和电压的关系,通常使用欧姆定律和基尔霍夫定律来分析电路。根据电路的拓扑结构和电路元件的连接方式,可以建立电压和电流之间的方程。 3. 使用复数法和复数运算来处理电流和电压。将电压和电流表示为复数形式,并使用欧姆定律和基尔霍夫定律的复数形式来建立方程组。 4. 将得到的方程组进行联立求解,解方程组得到电路中各个支路的电流和电压的复数解。其中一个复数解对应着正弦稳态电路中的一个工作状态。 5. 利用功率的定义,根据电压和电流的复数解,可以计算得到电路中各个支路的功率。功率的计算可以使用欧姆定律和有功功率的定义来进行。 6. 找到正弦稳态电路中某一支路或某些支路的功率最大值。可以通过对功率公式的求导或利用最大功率传输定理来求解最大功率。 7. 最后,通过求解得到的最大功率,可以对电路进行优化设计,调整电路参数或元件布局,使得电路能够以最大功率输出。 需要注意的是,正弦稳态电路的最大功率求解是一个复杂的问题,需要运用电路分析的知识和数学方法来解决。在实际应用中,还要考虑元器件的参数限制和电路的稳定性等因素。 ### 回答3: 正弦稳态电路最大功率求解的思路如下: 首先,确定正弦稳态电路中的元件参数以及输入信号的频率和幅值。 其次,根据正弦稳态电路的性质,在稳态条件下,电路中各个元件的电压和电流都是正弦函数,可以通过相量法或者复数法来表示。 然后,根据电路中的功率公式,可以得到电路中各个元件的功率表达式。 接着,通过对电路中各个元件的功率表达式进行求导,可以得到功率的函数。 最后,将功率的函数进行求解,找到函数的最大值点即为正弦稳态电路的最大功率点。 需要注意的是,最大功率点的存在和求解需要满足一定的条件,比如正弦稳态电路中各个元件的参数要满足一定的关系,且输入信号的频率和幅值也要满足一定的条件。 在实际操作中,可以使用数值计算软件或者手工计算方法来求解最大功率点的具体数值。 综上所述,正弦稳态电路最大功率求解的思路主要包括确定电路参数和输入信号、表示电路中各个元件的电压和电流、推导功率的函数表达式、求解功率函数的最大值点。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值