傅里叶级数和傅里叶变换,他们作用是将信号进行分解,其中傅里叶级数的本质是将周期信号分解为一系列复指数函数的和,而傅里叶变换的本质则将非周期信号分解为一系列复指数信号的积分,并且傅里叶变换 F ( j ω ) F(j\omega) F(jω)对应的是傅里叶级数中各个子信号的幅值 C n C_n Cn。关于傅里叶级数和傅里叶变换的区别和联系,在信号与系统(12)- 周期信号的傅里叶变换 有所讨论。
回顾之前提到的几个问题:
- 选取什么子信号将信号分解?
- 如何分解?
- 如何求得子信号的响应?
- 如何将子信号的响应叠加,进而求得原信号的响应?
上述问题中,关于第一个问题,选用了正弦信号或复指数信号将信号进行分解。而关于第二个问题,对于周期信号可以使用傅里叶级数分解,关于非周期信号可以使用傅里叶变换分解,那么将信号分解为子信号之后,如何求得子信号的响应就成为了下一个问题。下面将对这个问题进行讲述,即正弦稳态响应的求解。
这部分内容属于电路分析课程中的内容,这里将选取重点进行回顾,为后续说明频域分析方法做准备。
1. 什么是复数?
1.1 复数的表示
设 A A A是一个复数,a和b分别是它的实部和虚部,则复数 A A A可以通过一下方式表示:
- 直角坐标形式
即:
A = a + j b A = a+ jb A=a+jb
上式中的** j j j是虚数单位,即 j = − 1 j=\sqrt{-1} j=−1**。复数A的实部和虚部可以分别表示为:
R e ( A ) = a , I m ( A ) = b Re(A)=a, \space \space \space Im(A)=b Re(A)=a, Im(A)=b
- 通过复平面表示
如果将复数A的实部视为直角坐标的横轴,虚部看为直角坐标的纵轴,将这样的直角坐标系称为复平面,则复数A在复平面上的表示为:
由上图可知,这条有向线段的长度为复数A的模,记作 ∣ A ∣ \vert A \vert ∣A∣,线段与实轴的夹角为幅角,记作 θ \theta θ,并且:
a = ∣ A ∣ c o s θ , b = ∣ A ∣ s i n θ a = \vert A\vert cos \theta,\space \space \space b=\vert A\vert sin \theta a=∣A∣cosθ, b=∣A∣sinθ
因此复数A也可以表示为:
A = ∣ A ∣ c o s θ + j ∣ A ∣ s i n θ = ∣ A ∣ ( c o s θ + j s i n θ ) \begin{aligned} A &= \vert A\vert cos\theta + j\vert A \vert sin\theta \\&=\vert A \vert(cos\theta + jsin\theta) \end{aligned} A=∣A∣cosθ+j∣A∣sinθ=∣A∣(cosθ+jsinθ)
这种形式也称为三角形式
- 通过指数表示
由欧拉公式:
e j θ = c o s θ + j s i n θ e^{j\theta}=cos\theta +jsin\theta ejθ=cosθ+jsinθ
因此 A = ∣ A ∣ ( c o s θ + j s i n θ ) A = \vert A \vert (cos\theta + jsin\theta) A=∣A∣(cosθ+jsinθ)可以写为:
A = ∣ A ∣ e j θ A = \vert A \vert e^{j\theta} A=∣A∣ejθ
上式即复数的指数形式
- 通过极坐标表示
极坐标形式将体现复数A的模的大小和幅角,即:
A = ∣ A ∣ ∠ θ A = \vert A \vert \angle\theta A=∣A∣∠θ
通过三角形式,可以确定幅值和幅角,即:
∣ A ∣ = a 2 + b 2 , θ = a r c t a n ( b a ) \vert A \vert = \sqrt{a^2+b^2},\space \space \space \theta = arctan(\frac{b}{a}) ∣A∣=a2+b2, θ=arctan(ab)
1.2复数的运算
- 相等
对于三角坐标或指教坐标的形式,若两个复数的实部和虚部分别相等,则称这两个复数相等。对于极坐标的形式,若两个复数的幅值和幅角分别相等,则称这两个复数相等。
- 加减运算
复数的加减运算往往需要先将指数形式或复数形式转换为直角坐标形式再进行运算:
设 A 1 = a 1 + j b 1 A_1 = a_1 +jb_1 A1=a1+jb1, A 2 = a 2 + j b 2 A_2 = a_2+jb_2 A2=a2+jb2,则
A 1 ± A 2 = ( a 1 ± a 2 ) + j ( b 1 ± b 2 ) A_1 \pm A_2 = (a_1 \pm a_2)+j(b_1 \pm b_2) A1±A2=(a1±a2)+j(b1±b2)
复数的加减运算可以看为矢量的加减运算,通过平行四边形法则以及三角形法则在复平面中进行变换。
- 乘法运算
若复数为直角坐标形式,即:
A 1 = a 1 + j b 1 , A 2 = a 2 + j b 2 A_1 = a_1 +jb_1,\space A_2 = a_2+jb_2 A1=a1+jb1, A2=a2+jb2
则:
A 1 A 2 = ( a 1 + j b 1 ) ( a 2 + j b 2 ) = ( a 1 a 2 − b 1 b 2 ) + j ( a 1 b 2 + a 2 b 1 ) \begin{aligned} A_1 A_2 &= (a_1 +jb_1)(a_2 +jb_2) \\&=(a_1a_2-b_1b_2)+j(a_1b_2+a_2b_1) \end{aligned} A1A2=(a1+jb1)(a2+jb2)=(a1a2−b1b2)+j(a1b2+a2b1)
若复数为极坐标形式,即:
A 1 = ∣ A 1 ∣ ∠ θ , A 2 = ∣ A 2 ∣ ∠ θ A_1 = \vert A_1 \vert \angle\theta, \space \space A_2 = \vert A_2 \vert \angle\theta A1=∣A1∣∠θ, A2=∣A2∣∠θ
则:
A 1 A 2 = ∣ A 1 ∣ e j θ 1 ∣ A 2 ∣ e j θ 2 = ∣ A 1 ∣ ∣ A 2 ∣ e j ( θ 1 + θ 2 ) = ∣ A 1 ∣ ∣ A 2 ∣ ∠ ( θ 1 + θ 2 ) \begin{aligned} A_1A_2 &= \vert A_1\vert e^{j\theta_1} \vert A_2\vert e^{j\theta_2} \\&=\vert A_1\vert \vert A_2\vert e^{j(\theta_1+\theta_2)} \\&=\vert A_1\vert \vert A_2\vert \angle(\theta_1+\theta_2) \end{aligned} A1A2=∣A1∣ejθ1∣A2∣ejθ2=∣A1∣∣A2∣ej(θ1+θ2)=∣A1∣∣A2∣∠(θ1+θ2)
即复数的乘法是幅度乘以幅度,相角加相角。
- 除法运算
若复数为直角坐标形式,即:
A 1 = a 1 + j b 1 , A 2 = a 2 + j b 2 A_1 = a_1 +jb_1,\space A_2 = a_2+jb_2 A1=a1+jb1, A2=a2+jb2
则:
A 1 A 2 = a 1 + j b 1 a 2 + j b 2 = a 1 a 2 + b 1 b 2 a 2 2 + b 2 2 + j a 2 b 1 − a 1 b 2 a 2 2 + b 2 2 \begin{aligned} \frac{A_1}{A_2}&=\frac{a_1 +jb_1}{a_2+jb_2} \\&=\frac{a_1a_2+b_1b_2}{a_2^2+b_2^2}+j\frac{a_2b_1-a_1b_2}{a_2^2+b_2^2} \end{aligned} A2A1=a2+jb2a1+jb1=a22+b22a1a2+b1b2+ja22+b22a2b1−a1b2
若复数为极坐标形式,即:
A 1 = ∣ A 1 ∣ ∠ θ , A 2 = ∣ A 2 ∣ ∠ θ A_1 = \vert A_1 \vert \angle\theta, \space \space A_2 = \vert A_2 \vert \angle\theta A1=∣A1∣∠θ, A2=∣A2∣∠θ
则:
A 1 A 2 = ∣ A 1 ∣ ∣ A 2 ∣ e j θ 1 e j θ 2 = ∣ A 1 ∣ ∣ A 2 ∣ e j ( θ 1 − θ 2 ) = ∣ A 1 ∣ ∣ A 2 ∣ ∠ ( θ 1 − θ 2 ) \begin{aligned} \frac{A_1}{A_2}&=\frac{\vert A_1 \vert}{\vert A_2 \vert}\frac{e^j\theta_1}{e^j\theta_2} \\&=\frac{\vert A_1 \vert}{\vert A_2 \vert}e^{j(\theta_1-\theta_2)} \\&=\frac{\vert A_1 \vert}{\vert A_2 \vert} \angle(\theta_1-\theta_2) \end{aligned} A2A1=∣A2∣∣A1∣ejθ2ejθ1=∣A2∣∣A1∣ej(θ1−θ2)=∣A2∣∣A1∣∠(θ1−θ2)
即复数的除法是幅度除以幅度,相角减相角
1.3 相量
相量法是复数这个数学概念在电路分析中的一个应用。如果说数学中使用向量可以表示正弦函数,那么在电学系统中,相量则可以表示一个特定频率下的正弦信号。
首先,对于一个正弦信号,如:
i = I m s i n ( ω t + φ i ) i=I_msin(\omega t +\varphi_i) i=Imsin(ωt+φi)
其中幅值 I m I_m Im,角频率 ω = 2 π f \omega=2\pi f ω=2πf,以及初始相位 φ i \varphi_i φi为正弦量的三要素。初始相位即 t = 0 t=0 t=0时刻的相位,一般取值为 [ 0 , 18 0 ∘ ] [0,180^{\circ}] [0,180∘]。
如果用复指数函数表示上述信号,则对于上述正弦信号,需取复指数函数的虚部,如下:
i = I m s i n ( ω t + φ i ) = I m ⋅ I m [ e j ( ω t + φ i ) ] = I m [ I m ⋅ e j ( ω t + φ i ) ]