Data Constraint
对于 30% 的数据,n ≤ 3000;
对于另外 20% 的数据,数列 a 为随机生成;
对于 100% 的数据,1 ≤ n ≤ 3 × 10^5 , 1 ≤ k ≤ 10^6 , 1 ≤ ai ≤ 10^9。
题解
很容易想到一种类似分治的做法,
每次在区间[l,r]中,找出最大值的位置id,
将最大值左右两边,跨过最大最的统计答案,
然后分别操作[l,id-1]和[id+1,r]区间。
当数据随机的时候,这个的时间复杂度就是
O(nlogn)
O
(
n
l
o
g
n
)
的。
其实,只要对上面的做法进行一下优化,就可以通过全部数据了。
想一种办法,让它减少枚举的次数,
那么很显然,就是枚举少的那边,然后再多的那一边查询答案个数。
具体来看,每次查询,给出一个三元组(l,r,v),表示在区间[l,r]中,查询有多少个前缀和的值为v。
至于怎么完成这个询问,方法很多,可以离线,可以在线。
code
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <string.h>
#include <cmath>
#define ll long long
#define N 300005
#define M 103
#define db double
#define P putchar
#define G getchar
#define ls (x<<1)
#define rs (x<<1|1)
using namespace std;
char ch;
void read(int &n)
{
n=0;
ch=G();
while((ch<'0' || ch>'9') && ch!='-')ch=G();
ll w=1;
if(ch=='-')w=-1,ch=G();
while('0'<=ch && ch<='9')n=(n<<3)+(n<<1)+ch-'0',ch=G();
n*=w;
}
int max(int a,int b){return a>b?a:b;}
int min(int a,int b){return a<b?a:b;}
ll abs(ll x){return x<0?-x:x;}
ll sqr(ll x){return x*x;}
void write(ll x){if(x>9) write(x/10);P(x%10+'0');}
struct node
{
int l,r,s;
}t[N*103],tt2;
struct arr
{
int mx,id;
}w[N*4],tt1;
int n,k,a[N],opl,opr,tot;
ll ans,s[N];
void build(int x,int l,int r)
{
if(l==r)
{
w[x].mx=a[l];
w[x].id=l;
return;
}
int m=(l+r)>>1;
build(ls,l,m);
build(rs,m+1,r);
if(w[ls].mx>w[rs].mx)w[x]=w[ls];
else w[x]=w[rs];
}
void find(int x,int l,int r)
{
if(opl<=l && r<=opr)
{
if(tt1.mx<w[x].mx)tt1=w[x];
return;
}
int m=(l+r)>>1;
if(opl<=m)find(ls,l,m);
if(m<opr)find(rs,m+1,r);
}
int work(int x,int y,int l,int r,int v)
{
if(l==r)return t[y].s-t[x].s;
int m=(l+r)>>1;
if(v<=m)return work(t[x].l,t[y].l,l,m,v);
else return work(t[x].r,t[y].r,m+1,r,v);
}
int get(int l,int r,int w)
{
return work(l-1,r,1,k,w+1);
}
void solve(int l,int r)
{
if(l>=r)return;
tt1.mx=0;
opl=l;opr=r;
find(1,1,n);
int id=tt1.id;
if(id-l<r-id)
{
for(int i=l;i<=id;i++)
ans=ans+get(id+2,r+1,(s[i-1]+a[id])%k);
if(l<id)ans=ans+get(l,id-1,(s[id]-a[id]%k+k)%k);
}
else
{
for(int i=id;i<=r;i++)
ans=ans+get(l,id-1,(s[i]-a[id]%k+k)%k);
if(id<r)ans=ans+get(id+2,r+1,(s[id-1]+a[id])%k);
}
solve(l,id-1);
solve(id+1,r);
}
void ins(int x,int xx,int l,int r,int y)
{
if(l==r)
{
t[x].s=t[xx].s+1;
return;
}
int m=(l+r)>>1;
if(y<=m)
{
if(!t[x].l)t[x].l=++tot;
t[x].r=t[xx].r;
ins(t[x].l,t[xx].l,l,m,y);
}
else
{
if(!t[x].r)t[x].r=++tot;
t[x].l=t[xx].l;
ins(t[x].r,t[xx].r,m+1,r,y);
}
t[x].s=t[t[x].l].s+t[t[x].r].s;
}
int main()
{
freopen("interval.in","r",stdin);
freopen("interval.out","w",stdout);
read(n);read(k);tot=n+1;
for(int i=1;i<=n;i++)read(a[i]),s[i]=(s[i-1]+a[i])%k,ins(i,i-1,1,k,s[i-1]+1);
ins(n+1,n,1,k,s[n]+1);
build(1,1,n);
solve(1,n);
printf("%lld",ans);
return 0;
}