JZOJ5807. 【NOIP提高A组模拟2018.8.13】简单的区间

30 篇文章 0 订阅
2 篇文章 0 订阅

这里写图片描述

Data Constraint

对于 30% 的数据,n ≤ 3000;
对于另外 20% 的数据,数列 a 为随机生成;
对于 100% 的数据,1 ≤ n ≤ 3 × 10^5 , 1 ≤ k ≤ 10^6 , 1 ≤ ai ≤ 10^9。

题解

很容易想到一种类似分治的做法,
每次在区间[l,r]中,找出最大值的位置id,
将最大值左右两边,跨过最大最的统计答案,
然后分别操作[l,id-1]和[id+1,r]区间。
当数据随机的时候,这个的时间复杂度就是 O(nlogn) O ( n l o g n ) 的。
其实,只要对上面的做法进行一下优化,就可以通过全部数据了。
想一种办法,让它减少枚举的次数,
那么很显然,就是枚举少的那边,然后再多的那一边查询答案个数。
具体来看,每次查询,给出一个三元组(l,r,v),表示在区间[l,r]中,查询有多少个前缀和的值为v。
至于怎么完成这个询问,方法很多,可以离线,可以在线。

code

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <string.h>
#include <cmath>
#define ll long long
#define N 300005
#define M 103
#define db double
#define P putchar
#define G getchar
#define ls (x<<1)
#define rs (x<<1|1)
using namespace std;
char ch;
void read(int &n)
{
    n=0;
    ch=G();
    while((ch<'0' || ch>'9') && ch!='-')ch=G();
    ll w=1;
    if(ch=='-')w=-1,ch=G();
    while('0'<=ch && ch<='9')n=(n<<3)+(n<<1)+ch-'0',ch=G();
    n*=w;
}

int max(int a,int b){return a>b?a:b;}
int min(int a,int b){return a<b?a:b;}
ll abs(ll x){return x<0?-x:x;}
ll sqr(ll x){return x*x;}
void write(ll x){if(x>9) write(x/10);P(x%10+'0');}

struct node
{
    int l,r,s;
}t[N*103],tt2;

struct arr
{
    int mx,id;
}w[N*4],tt1;

int n,k,a[N],opl,opr,tot;
ll ans,s[N];

void build(int x,int l,int r)
{
    if(l==r)
    {
        w[x].mx=a[l];
        w[x].id=l;
        return;
    }
    int m=(l+r)>>1;
    build(ls,l,m);
    build(rs,m+1,r);
    if(w[ls].mx>w[rs].mx)w[x]=w[ls];
        else w[x]=w[rs];
}

void find(int x,int l,int r)
{
    if(opl<=l && r<=opr)
    {
        if(tt1.mx<w[x].mx)tt1=w[x];
        return;
    }
    int m=(l+r)>>1;
    if(opl<=m)find(ls,l,m);
    if(m<opr)find(rs,m+1,r);
}

int work(int x,int y,int l,int r,int v)
{
    if(l==r)return t[y].s-t[x].s;
    int m=(l+r)>>1;
    if(v<=m)return work(t[x].l,t[y].l,l,m,v);
        else return work(t[x].r,t[y].r,m+1,r,v);
}

int get(int l,int r,int w)
{
    return work(l-1,r,1,k,w+1);
}

void solve(int l,int r)
{
    if(l>=r)return;
    tt1.mx=0;
    opl=l;opr=r;
    find(1,1,n);
    int id=tt1.id;

    if(id-l<r-id)
    {
        for(int i=l;i<=id;i++)
            ans=ans+get(id+2,r+1,(s[i-1]+a[id])%k);
        if(l<id)ans=ans+get(l,id-1,(s[id]-a[id]%k+k)%k);
    }
    else
    {
        for(int i=id;i<=r;i++)
            ans=ans+get(l,id-1,(s[i]-a[id]%k+k)%k);
        if(id<r)ans=ans+get(id+2,r+1,(s[id-1]+a[id])%k);
    }

    solve(l,id-1);
    solve(id+1,r);
}

void ins(int x,int xx,int l,int r,int y)
{
    if(l==r)
    {
        t[x].s=t[xx].s+1;
        return;
    }
    int m=(l+r)>>1;
    if(y<=m)
    {
        if(!t[x].l)t[x].l=++tot;
        t[x].r=t[xx].r;
        ins(t[x].l,t[xx].l,l,m,y);
    }
    else
    {
        if(!t[x].r)t[x].r=++tot;
        t[x].l=t[xx].l;
        ins(t[x].r,t[xx].r,m+1,r,y);
    }
    t[x].s=t[t[x].l].s+t[t[x].r].s;
}

int main()
{
    freopen("interval.in","r",stdin);
    freopen("interval.out","w",stdout);

    read(n);read(k);tot=n+1;
    for(int i=1;i<=n;i++)read(a[i]),s[i]=(s[i-1]+a[i])%k,ins(i,i-1,1,k,s[i-1]+1);
    ins(n+1,n,1,k,s[n]+1);
    build(1,1,n);
    solve(1,n);
    printf("%lld",ans);

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值