教程|腾讯云高性能应用服务(HAI)搭建多音色控制的TTS引擎

本文详细指导如何利用腾讯云的HAI服务搭建一个支持多音色的文本转语音(TTS)系统,包括登录HAI控制台、设置AI框架、安装依赖、克隆代码库、运行UI界面和API服务的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这篇文章中,我们将介绍如何使用腾讯云的高性能应用服务(HAI)来搭建一个具有多音色控制的文本转语音(TTS)引擎,具体操作步骤如下:

登录高性能应用服务 HAI 控制台

点击 新建 选择 AI 框架,选择算力方案、输入 实例名称、选择数量 后立即购买

开启学术加速功能

完成创建,查看运行状态

进入 jupyter_lab 环境

 

安装 git-lfs:

apt-get clean && apt-get update
apt-get install git-lfs

克隆 EmotiVoice 仓库:

cd /root && git clone https://github.com/netease-youdao/EmotiVoice

下载预训练模型文件:

cd /root/EmotiVoice
git lfs install
git lfs clone https://www.modelscope.cn/syq163/WangZeJun.git


下载 ckpt 模型:

cd /root/EmotiVoice
git lfs clone https://www.modelscope.cn/syq163/outputs.git

安装 EmotiVoice 依赖:

pip install numpy numba scipy transformers==4.26.1 soundfile yacs g2p_en jieba pypinyin


运行 UI 交互界面:

pip install streamlit
cd /root/EmotiVoice && streamlit run demo_page.py --server.port 6889 --logger.level debug

启动命令中的 6889 端口是 高性能应用服务默认开放的端口之一,如果修改了启动命令中的端口,需要手动配置 HAI 的安全组策略,将服务端口放行

运行类 OpenAI TTS 的 API

# 安装ffmpeg
apt-get clean && apt-get update
apt-get install ffmpeg

# 安装API所需的依赖
pip install fastapi
pip install pydub
pip install uvicorn[standard]

# 运行服务
cd /root/EmotiVoice
uvicorn openaiapi:app --reload --host 0.0.0.0 --port 6006

启动后可以通过/docs 查看接口文档

### 如何在腾讯云HAI平台安装配置RAGFlow #### 准备工作 为了顺利部署 RAGFlow,在腾讯云HAI平台上需完成一系列准备工作。这包括但不限于创建并激活相应的服务实例,确保拥有足够的权限来执行必要的操作以及确认网络设置允许外部资源访问[^1]。 #### 安装环境搭建 通过SSH连接至已准备好的服务器节点之后,更新系统包管理器缓存以获取最新的软件列表。对于基于Debian/Ubuntu系统的命令如下所示: ```bash sudo apt-get update && sudo apt-get upgrade -y ``` 接着安装Python及其开发工具链,因为大数机器学习框架依赖于特定版本的解释器运行时支持。 ```bash sudo apt install python3-pip python3-dev build-essential libssl-dev libffi-dev python3-setuptools ``` #### 配置虚拟环境 建议为项目建立独立的工作空间,这样可以有效隔离不同项目的依赖关系冲突问题。利用`virtualenv`创建一个新的Python环境,并将其激活以便后续安装所需的库文件而不会影响全局环境。 ```bash pip3 install virtualenv virtualenv venv source ./venv/bin/activate ``` #### 安装RAGFlow及相关依赖项 进入之前构建好的虚拟环境中后,可以通过PyPI仓库下载最新发布的稳定版RAGFlow包以及其他必需的支持组件。具体来说就是执行下面这条指令来进行批量安装过程。 ```bash pip install ragflow[all] ``` #### 初始化与验证 按照官方文档指示完成上述步骤以后,应该能够成功启动应用程序并通过简单的测试案例检验其功能是否正常运作。如果遇到任何异常情况,则参照错误提示信息排查可能存在的原因所在之处[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值