题目背景
要保护环境
题目描述
木材厂有 nn 根原木,现在想把这些木头切割成 kk 段长度均为 ll 的小段木头(木头有可能有剩余)。
当然,我们希望得到的小段木头越长越好,请求出 ll 的最大值。
木头长度的单位是 cmcm,原木的长度都是正整数,我们要求切割得到的小段木头的长度也是正整数。
例如有两根原木长度分别为 1111 和 2121,要求切割成等长的 66 段,很明显能切割出来的小段木头长度最长为 55。
输入格式
第一行是两个正整数 n,kn,k,分别表示原木的数量,需要得到的小段的数量。
接下来 nn 行,每行一个正整数 LiLi,表示一根原木的长度。
输出格式
仅一行,即 ll 的最大值。
如果连 1cm1cm 长的小段都切不出来,输出 0
。
样例 #1
样例输入 #1
3 7
232
124
456
Copy
样例输出 #1
114
Copy
提示
数据规模与约定
对于 100%100% 的数据,有 1≤n≤1051≤n≤105,1≤k≤1081≤k≤108,1≤Li≤108(i∈[1,n])1≤Li≤108(i∈[1,n])。
题解:
#include<bits/stdc++.h>
using namespace std;
int n,m,mix;
int a[1000000];
//判断钢管为n时能否切m个
bool check(int x){
int s=0;
for(int i=0;i<n;i++){
s+=a[i]/x;
}
if(s>=m) return true;
else return false;
}
int main(){
cin>>n>>m;
for(int i=0;i<n;i++){
cin>>a[i];
}
int Max=0;
for(int i=0;i<n;i++){
Max=max(a[i],Max);
}
int l=1,r=Max,mid=0;
while(l<=r){
mid=(l+r)/2;
// 若mid可以,往上找
if(check(mid)){
mix=mid;
l=mid+1;
// cout<<mid<<" ";
}
else {
r=mid-1;
}
}
cout<<mix;
return 0;
}
//其实这道题很水,看我之前发的切割钢管就可以发现两道题的代码一模一样,所以细心也是一种优良传统。