多元微分学

实际应用中的函数普遍包含多个变量,当进入高维时,微积分的普遍法则本质上保持原样,虽然必须引入一些新的记号,但幸运的是并不需要彻底改造原有理论,多变量微积分无非是同时在各个方向运用单变量微积分(向量和矩阵表示将大大简化多元微积分,并能保持与低维形式上的一致性)。

本文使用小写字母 x 表示标量,粗体小写字母 x 表示向量,大写字母 X 表示矩阵。

梯度(Gradient)

多元函数

定义: f:xy ,其中 x=(x1,x2,...,xn)n y 。多元函数是从n维空间(n维向量)到一维空间(标量)的映射。

等高线图

定义:对于二元函数 f(x,y) ,曲线 f(x,y)=z0 称为函数f在平面 z=z0 中的等高线。如果所有等高线 z=z0 都被投射到 xy 平面上,则得到这个曲面的等高线图。

这里写图片描述

梯度(向量)

定义: f 在点 x 处的梯度是由对应维度的偏导构成向量,记作 f(x) ,读作grad f或del f。

f(x)=[fxi]n×1

性质:

  • 梯度是标量对向量的导数;
  • 梯度是输入空间中的一个偏导向量;
  • 梯度的方向是在输入空间中使函数增长最快的方向;
  • 梯度的大小是函数关于输入向量的最大变化率;
  • 梯度也称为全导数,记做 f(x)

f(x)=f(x)=[fxi]n×1f(x)f(x0)+f(x0)T(xx0)

全微分

定义:多元函数全增量 f 的线性主部,记做 df

f=i=1naixi+o(ρ)df=i=1nfxidxi=f(x)dx

梯度-全导数-全微分-偏导之间的关系如下:

f(x)=f(x)=dfdx=[fxi]n×1

方向导数

定义:设 u 为单位向量, f 在该方向上的方向导数(变化率)记做 fu

f(x)u=limh0f(x+hu)f
  • 3
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值