多元微分

本文详细介绍了多元微分的相关概念,包括欧式空间、点列极限、开集与闭集,以及多元函数的极限、连续性、偏导数、全微分和方向导数。特别强调了在欧几里德空间中距离的定义,以及开集和闭集的性质。还讨论了多元函数的极限、连续性与偏导数的关系,以及方向导数和梯度的概念。
摘要由CSDN通过智能技术生成

欧式空间

一般来说,描述n元函数的自变量,需要考虑n个有次序的实数组:
(x1,x2,…xn)
以及由全体这样的数组成的集合:
Rn={(x1,x2,…xr)|xj∈R,j=1,2,…,n}
我们把每一个数组称为Rn中的一个点。我们称Rn为n维向量空间。
设V是实数域R上的线性空间(或称为向量空间),若V上定义着正定对称双线性型g(g称为内积),则V称为(对于g的)内积空间或欧几里德空间(有时仅当V是有限维时,才称为欧几里德空间)。 [3] 具体来说,g是V上的二元实值函数,满足如下关系:
(1)g(x,y)=g(y,x);
(2)g(x+y,z)=g(x,z)+g(y,z);
(3)g(kx,y)=kg(x,y);
(4)g(x,x)>=0,而且g(x,x)=0当且仅当x=0时成立。
这里x,y,z是V中任意向量,k是任意实数。
x=(x1,x2…,xn),y=(y1,y2,…yn)∈Rn,则x与y的距离定义为
|x-y|=||x-y||=∑ √(xi-yi)^2i=1到n求和。
正定性,对称性|向量x-向量y|=|向量y-x向量|,三角不等式(三个向量构成的三角形,两边的和大于第三边)。
定义3设P0∈Rⁿ是一固定点,δ>0为一实数,则集合{P|ρ(P,P0)<δ)称为以P0为中心的δ邻域,记作U(P0,δ)。
P0称为邻域的中心,δ称为邻域的半径,某邻域当不需要指出半径时,可以简单地说是P0的某邻域,记作U(P0),显然,在R,R2,R3中的邻域U(P0,δ),就分别是以P0为中心以δ为半径的开区间、开圆和开球。
内积和极限可以交换顺序。

点列极限,开集与闭集

定义&#

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值