一致性hash和simhash

转载:

http://leoncom.org/?tag=simhash

http://blog.sina.com.cn/s/blog_56d8ea900100y41b.html

 

Simhash

传统IR领域内文本相似度比较所采用的经典方法是文本相似度的向量夹角余弦,其主要思想是根据一个文章中出现词的词频构成一个向量,然后计算两篇文章对应向量的向量夹角。但由于有可能一个文章的特征向量词特别多导致整个向量维度很高,使得计算的代价太大,对于Google这种处理万亿级别的网页的搜索引擎而言是不可接受的,simhash算法的主要思想是降维,将高维的特征向量映射成一个f-bit的指纹(fingerprint),通过比较两篇文章的f-bit指纹的Hamming Distance来确定文章是否重复或者高度近似。

simhash算法很精巧,但却十分容易理解和实现,具体的simhash过程如下:

1. 首先基于传统的IR方法,将文章转换为一组加权的特征值构成的向量。

2.初始化一个f维的向量V,其中每一个元素初始值为0。

3.对于文章的特征向量集中的每一个特征,做如下计算:

利用传统的hash算法映射到一个f-bit的签名。对于这个f- bit的签名,如果签名的第i位上为1,则对向量V中第i维加上这个特征的权值,否则对向量的第i维减去该特征的权值。

4.对整个特征向量集合迭代上述运算后,根据V中每一维向量的符号来确定生成的f-bit指纹的值,如果V的第i维为正数,则生成f-bit指纹的第i维为1,否则为0。

simhash

simhash和普通hash最大的不同在于传统的hash函数虽然也可以用于映射来比较文本的重复,但是对于可能差距只有一个字节的文档也会映射成两个完全不同的哈希结果,而simhash对相似的文本的哈希映射结果也相似。Google的论文中取了f=64,即将整个网页的加权特征集合映射到一个64-bit的fingerprint上。

比起simhash,整片文章中Google所采用的查找与给定f-bit的fingerprint的海明距离(Hamming Distance)小于k的算法相对还稍微难理解点。

fingerprint的Hamming Distance

问题:一个80亿的64-bit指纹组成的集合Q,对于一个给定64-bit的指纹F,如何在a few millionseconds中找到Q中和f至多只有k(k=3)位差别的指纹。

思想:1. 对于一个具有2^d个记录的集合,只需要考虑d-bit hash。2. 选取一个d’使得|d’-d|十分小,因此如果两fingerprint在d’-bits上都相同,那么在d-bits也很可能相同。然后在这些d-bit match的结果中寻找整个f-bit的Hamming Distance小于k的fingerprint。简单的说,就是利用fingerprint少量特征位数比较从而首先缩小范围,然后再去确定是否差异小于k个bit。

算法:

1. 首先对于集合Q构建多个表T1,T2…Tt,每一个表都是采用对应的置换函数π(i)将64-bit的fingerprint中的某p(i)位序列置换换到整个序列的最前面。即每个表存储都是整个Q的fingerprint的复制置换。

2.对于给定的F,在每个Ti中进行匹配,寻找所有前pi位与F经过π(i)置换后的前pi位相同的fingerprint。

3.对于所有在上一步中匹配到的置换后的fingerprint,计算其是否与π(i)(F)至多有k-bit不同。

算法的重点在于对于集合Q的分表以及每个表所对应的置换函数,假设对于64-bit的fingerprint,k=3,存储16个table,划分参考下图:

HammingTable

将64-bit按照16位划分为4个区间,每个区间剩余的48-bit再按照每个12-bit划分为4个区间,因此总共16个table并行查找,即使三个不同的k-bit落在A、B、C、D中三个不同的区块,此划分方法也不会导致遗漏。

以上方法是对于online的query,即一个给定的F在集合中查找相似的fingerprint。如果爬虫每天爬取了100w个网页,快速的查找这些新抓取的网页是否在原集合中有Near-duplication,对于这种batch-query的情况,Map-Reduce就发挥它的威力了。

batch-query

不同的是,在batch-query的处理中,是对待查集合B(1M个fingerprint)进行复制置换构建Table而非8B的目标集合,而在每一个chunkserver上对Fi(F为整个8B的fingerprint)在整个Table(B)中进行探测,每一个chunkserver上的的该Map过程输出该Fi中与整个B的near-duplicates,Reduces过程则将所有的结果收集、去重、然后输出为一个sorted file。

Haffman编码压缩

上述的查询过程,特别是针对online-version的算法,可以看出需要对8B的fingerprint进行多表复制和构建,其占据的容量是非常大的,不过由于构建的每一个置换Table都是sorted的,因此可以利用每一个fingerprint与其前一个的开始不同的bit-position h(h∈[0,f-1]) 来进行数据压缩,即如果前一个编码是11011011,而自身是11011001,则后一个可以编码为(6)1,即h=6,其中6表示从第6位(从0开始编号)开始和上一个fingerprint不相同(上一个为1,这个必然为0),然后再保存不相同位置右侧的编码,依次生成整个table。

Google首先计算整个排序的fingerprint表中h的分布情况,即不同的h出现次数,依据此对[0,f-1]上出现的h建立Haffman code,再根据上述规则生成table(例如上面的6就表示成对应的Haffman code)。其中table分为多个block,每一个block中的第一个fingerprint保存原数据,后面的依次按照编码生成。

将每一个block中所对应的最后一个fingerprint保存在内存中,因此在比对的时候就可以直接根据内存中的fingerprint来确定是哪一个block需要被decompress进行比较。

8B个64-bit的fingerprint原占据空间大约为64GB,利用上述Haffman code压缩后几乎会减少一般,而内存中又只对每一个block保存了一个fingerprint。

每次看Google的论文都会让人眼前一亮,而且与很多(特别是国内)的论文是对未来进行设想不同,Google的东西都是已经运行了2,3年了再到WWW,OSDI这种顶级会议上灌个水。再次各种羡慕能去这个Dream Company工作的人,你们懂得。

参考:

Detecting Near-Duplicates for Web Crawling(Paper)

Detecting Near-Duplicates for Web Crawling(PPT)

 

 

simhash算法实现


参考文章:
http://www.cnblogs.com/linecong/archive/2010/08/28/simhash.html
http://blog.csdn.net/liema2000/article/details/6149561
http://blog.csdn.net/lgnlgn/article/details/6008498
http://www.cnpetweb.com/a/xinxizhongxin/lanmu9/2011/0913/13538.html

http://2588084.blog.51cto.com/2578084/558873
http://leoncom.org/?tag=simhash

代码如下:
一、python版
#!/usr/bin/python
# coding=utf-8
class simhash:
   
    #构造函数
    def __init__(self, tokens='', hashbits=128):       
        self.hashbits = hashbits
        self.hash = self.simhash(tokens);
   
    #toString函数   
    def __str__(self):
        return str(self.hash)
   
    #生成simhash值   
    def simhash(self, tokens):
        v = [0] * self.hashbits
        for t in [self._string_hash(x) for x in tokens]: #t为token的普通hash值          
            for i in range(self.hashbits):
                bitmask = 1 << i
                if t & bitmask :
                    v[i] += 1 #查看当前bit位是否为1,是的话将该位+1
                else:
                    v[i] -= 1 #否则的话,该位-1
        fingerprint = 0
        for i in range(self.hashbits):
            if v[i] >= 0:
                fingerprint += 1 << i
        return fingerprint #整个文档的fingerprint为最终各个位>=0的和
   
    #求海明距离
    def hamming_distance(self, other):
        x = (self.hash ^ other.hash) & ((1 << self.hashbits) - 1)
        tot = 0;
        while x :
            tot += 1
            x &= x - 1
        return tot
   
    #求相似度
    def similarity (self, other):
        a = float(self.hash)
        b = float(other.hash)
        if a > b : return b / a
        else: return a / b
   
    #针对source生成hash值   (一个可变长度版本的Python的内置散列)
    def _string_hash(self, source):       
        if source == "":
            return 0
        else:
            x = ord(source[0]) << 7
            m = 1000003
            mask = 2 ** self.hashbits - 1
            for c in source:
                x = ((x * m) ^ ord(c)) & mask
            x ^= len(source)
            if x == -1:
                x = -2
            return x
            

if __name__ == '__main__':
    s = 'This is a test string for testing'
    hash1 = simhash(s.split())
   
    s = 'This is a test string for testing also'
    hash2 = simhash(s.split())
   
    s = 'nai nai ge xiong cao'
    hash3 = simhash(s.split())
   
    print(hash1.hamming_distance(hash2) , "   " , hash1.similarity(hash2))
    print(hash1.hamming_distance(hash3) , "   " , hash1.similarity(hash3))

二、java版:
import java.math.BigInteger;
import java.util.StringTokenizer;

public class SimHash {

    private String tokens;

    private BigInteger strSimHash;

    private int hashbits = 128;

    public SimHash(String tokens) {
        this.tokens = tokens;
        this.strSimHash = this.simHash();
    }

    public SimHash(String tokens, int hashbits) {
        this.tokens = tokens;
        this.hashbits = hashbits;
        this.strSimHash = this.simHash();
    }

    public BigInteger simHash() {
        int[] v = new int[this.hashbits];
        StringTokenizer stringTokens = new StringTokenizer(this.tokens);
        while (stringTokens.hasMoreTokens()) {
            String temp = stringTokens.nextToken();
            BigInteger t = this.hash(temp);
            for (int i = 0; i < this.hashbits; i++) {
                BigInteger bitmask = new BigInteger("1").shiftLeft(i);
                 if (t.and(bitmask).signum() != 0) {
                    v[i] += 1;
                } else {
                    v[i] -= 1;
                }
            }
        }
        BigInteger fingerprint = new BigInteger("0");
        for (int i = 0; i < this.hashbits; i++) {
            if (v[i] >= 0) {
                fingerprint = fingerprint.add(new BigInteger("1").shiftLeft(i));
            }
        }
        return fingerprint;
    }

    private BigInteger hash(String source) {
        if (source == null || source.length() == 0) {
            return new BigInteger("0");
        } else {
            char[] sourceArray = source.toCharArray();
            BigInteger x = BigInteger.valueOf(((long) sourceArray[0]) << 7);
            BigInteger m = new BigInteger("1000003");
            BigInteger mask = new BigInteger("2").pow(this.hashbits).subtract(
                    new BigInteger("1"));
            for (char item : sourceArray) {
                BigInteger temp = BigInteger.valueOf((long) item);
                x = x.multiply(m).xor(temp).and(mask);
            }
            x = x.xor(new BigInteger(String.valueOf(source.length())));
            if (x.equals(new BigInteger("-1"))) {
                x = new BigInteger("-2");
            }
            return x;
        }
    }

    public int hammingDistance(SimHash other) {
        BigInteger m = new BigInteger("1").shiftLeft(this.hashbits).subtract(
                new BigInteger("1"));
        BigInteger x = this.strSimHash.xor(other.strSimHash).and(m);
        int tot = 0;
         while (x.signum() != 0) {
            tot += 1;
            x = x.and(x.subtract(new BigInteger("1")));
        }
        return tot;
    }

    public static void main(String[] args) {
        String s = "This is a test string for testing";
        SimHash hash1 = new SimHash(s, 128);
        System.out.println(hash1.strSimHash + "  " + hash1.strSimHash.bitLength());

        s = "This is a test string for testing also";
        SimHash hash2 = new SimHash(s, 128);
        System.out.println(hash2.strSimHash+ "  " + hash2.strSimHash.bitCount());

        s = "This is a test string for testing als";
        SimHash hash3 = new SimHash(s, 128);
        System.out.println(hash3.strSimHash+ "  " + hash3.strSimHash.bitCount());

        System.out.println("============================");
        System.out.println(hash1.hammingDistance(hash2));
        System.out.println(hash1.hammingDistance(hash3));
    }
}

结论:
python的计算能力确实很强,float可以表示任意长度的数字,而对应java、c++只能用其他办法来实现了,比如java的BigIneteger,对应的位操作也只能利用类方法。。。汗。。。
另外说明,位运算只适合整数哦。。。因为浮点的存储方案决定不能位运算,如果非要位运算,就需要Float.floatToIntBits,运算完,再通过Float.intBitsToFloat转化回去。(java默认的float,double的hashcode其实就是对应的floatToIntBits的int值)

java左移、右移: 移位运算符和气压的位运算符一样都是用来操作二进制位。
1)<< ,左移位:将操作符左侧的操作数向左移动操作数右侧指定的位数。移动的规则是在二进制的低位补0.
2)>> ,有符号右移位,将操作符左侧的操作数向右移动操作数右侧指定的位数。移动的规则是,如果被操作数的符号为正,则在二进制的高位补0;如果被操作数的符号为负,则在二进制的高位补1
3)>>> ,无符号右移位:将操作符左侧的操作数向右移动操作数右侧指定的位数。移动的对则是,无论被操作数的符号是正是负,都在二进制的高位补0.

例如: int a=-8;
System.out.print(a>>2);//结果为-2
int a=-8;
System.out.print(Integer.toBinaryString(a>>2));//结果为11111111111111111111111111111110
System.out.print(Integer.toBinaryString(a>>>2));//结果为11111111111111111111111111111110
int a=-8;
System.out.print(a>>>2);//结果为1073741822



    一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT)实现算法,设计目标是为了解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似。一致性哈希修正了CARP使用的简 单哈希算法带来的问题,使得分布式哈希(DHT)可以在P2P环境中真正得到应用。 
    一致性hash算法提出了在动态变化的Cache环境中,判定哈希算法好坏的四个定义:
1、平衡性(Balance):平衡性是指哈希的结果能够尽可能分布到所有的缓冲中去,这样可以使得所有的缓冲空间都得到利用。很多哈希算法都能够满足这一条件。
2、单调性(Monotonicity):单调性是指如果已经有一些内容通过哈希分派到了相应的缓冲中,又有新的缓冲加入到系统中。哈希的结果应能够保证原有已分配的内容可以被映射到原有的或者新的缓冲中去,而不会被映射到旧的缓冲集合中的其他缓冲区。 
3、分散性(Spread):在分布式环境中,终端有可能看不到所有的缓冲,而是只能看到其中的一部分。当终端希望通过哈希过程将内容映射到缓冲上时,由于不同终端所见的缓冲范围有可能不同,从而导致哈希的结果不一致,最终的结果是相同的内容被不同的终端映射到不同的缓冲区中。这种情况显然是应该避免的,因为它导致相同内容被存储到不同缓冲中去,降低了系统存储的效率。分散性的定义就是上述情况发生的严重程度。好的哈希算法应能够尽量避免不一致的情况发生,也就是尽量降低分散性。 
4、负载(Load):负载问题实际上是从另一个角度看待分散性问题。既然不同的终端可能将相同的内容映射到不同的缓冲区中,那么对于一个特定的缓冲区而言,也可能被不同的用户映射为不同 的内容。与分散性一样,这种情况也是应当避免的,因此好的哈希算法应能够尽量降低缓冲的负荷。

    在分布式集群中,对机器的添加删除,或者机器故障后自动脱离集群这些操作是分布式集群管理最基本的功能。如果采用常用的hash(object)%N算法,那么在有机器添加或者删除后,很多原有的数据就无法找到了,这样严重的违反了单调性原则。接下来主要讲解一下一致性哈希算法是如何设计的:

环形Hash空间
按照常用的hash算法来将对应的key哈希到一个具有2^32次方个桶的空间中,即0~(2^32)-1的数字空间中。现在我们可以将这些数字头尾相连,想象成一个闭合的环形。如下图
                                                                         
把数据通过一定的hash算法处理后映射到环上
现在我们将object1、object2、object3、object4四个对象通过特定的Hash函数计算出对应的key值,然后散列到Hash环上。如下图:
    Hash(object1) = key1;
    Hash(object2) = key2;
    Hash(object3) = key3;
    Hash(object4) = key4;
                                                           
将机器通过hash算法映射到环上
在采用一致性哈希算法的分布式集群中将新的机器加入,其原理是通过使用与对象存储一样的Hash算法将机器也映射到环中(一般情况下对机器的hash计算是采用机器的IP或者机器唯一的别名作为输入值),然后以顺时针的方向计算,将所有对象存储到离自己最近的机器中。
假设现在有NODE1,NODE2,NODE3三台机器,通过Hash算法得到对应的KEY值,映射到环中,其示意图如下:
Hash(NODE1) = KEY1;
Hash(NODE2) = KEY2;
Hash(NODE3) = KEY3;
                                                             
通过上图可以看出对象与机器处于同一哈希空间中,这样按顺时针转动object1存储到了NODE1中,object3存储到了NODE2中,object2、object4存储到了NODE3中。在这样的部署环境中,hash环是不会变更的,因此,通过算出对象的hash值就能快速的定位到对应的机器中,这样就能找到对象真正的存储位置了。

机器的删除与添加
普通hash求余算法最为不妥的地方就是在有机器的添加或者删除之后会照成大量的对象存储位置失效,这样就大大的不满足单调性了。下面来分析一下一致性哈希算法是如何处理的。
1. 节点(机器)的删除
    以上面的分布为例,如果NODE2出现故障被删除了,那么按照顺时针迁移的方法,object3将会被迁移到NODE3中,这样仅仅是object3的映射位置发生了变化,其它的对象没有任何的改动。如下图:
                                                              
2. 节点(机器)的添加 
    如果往集群中添加一个新的节点NODE4,通过对应的哈希算法得到KEY4,并映射到环中,如下图:
                                                              
    通过按顺时针迁移的规则,那么object2被迁移到了NODE4中,其它对象还保持这原有的存储位置。通过对节点的添加和删除的分析,一致性哈希算法在保持了单调性的同时,还是数据的迁移达到了最小,这样的算法对分布式集群来说是非常合适的,避免了大量数据迁移,减小了服务器的的压力。

平衡性
根据上面的图解分析,一致性哈希算法满足了单调性和负载均衡的特性以及一般hash算法的分散性,但这还并不能当做其被广泛应用的原由,因为还缺少了平衡性。下面将分析一致性哈希算法是如何满足平衡性的。hash算法是不保证平衡的,如上面只部署了NODE1和NODE3的情况(NODE2被删除的图),object1存储到了NODE1中,而object2、object3、object4都存储到了NODE3中,这样就照成了非常不平衡的状态。在一致性哈希算法中,为了尽可能的满足平衡性,其引入了虚拟节点。
    ——“虚拟节点”( virtual node )是实际节点(机器)在 hash 空间的复制品( replica ),一实际个节点(机器)对应了若干个“虚拟节点”,这个对应个数也成为“复制个数”,“虚拟节点”在 hash 空间中以hash值排列。
以上面只部署了NODE1和NODE3的情况(NODE2被删除的图)为例,之前的对象在机器上的分布很不均衡,现在我们以2个副本(复制个数)为例,这样整个hash环中就存在了4个虚拟节点,最后对象映射的关系图如下:
                                                                 
根据上图可知对象的映射关系:object1->NODE1-1,object2->NODE1-2,object3->NODE3-2,object4->NODE3-1。通过虚拟节点的引入,对象的分布就比较均衡了。那么在实际操作中,正真的对象查询是如何工作的呢?对象从hash到虚拟节点到实际节点的转换如下图:
                                         
“虚拟节点”的hash计算可以采用对应节点的IP地址加数字后缀的方式。例如假设NODE1的IP地址为192.168.1.100。引入“虚拟节点”前,计算 cache A 的 hash 值:
Hash(“192.168.1.100”);
引入“虚拟节点”后,计算“虚拟节”点NODE1-1和NODE1-2的hash值:
Hash(“192.168.1.100#1”); // NODE1-1
Hash(“192.168.1.100#2”); // NODE1-2

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值