LLM:RoPE - 开源代码中的实现 (下)

本文详细探讨了开源项目ChatGLM-6B、ChatGLM2-6B和LLAMA中RoPE旋转位置编码的实现细节。通过计算旋转矩阵和应用旋转变换,这些模型在不同阶段融入位置信息,以增强self-attention计算。ChatGLM2仅对输入前半部分应用RoPE,而LLAMA的实现则参考了深入的理论解析。
摘要由CSDN通过智能技术生成

本文着重学习一下开源代码中关于RoPE的实现:ChatGLM-6B、ChatGLM2-6B、LLAMA

回顾一下RoPE位置编码:

1:对于 token 序列中的每个词嵌入向量,首先计算其对应的 query 和 key 向量
2:然后对每个 token 位置都计算对应的旋转位置编码
3:接着对每个 token 位置的 query 和 key 向量的元素按照 两两一组 应用旋转变换
4:最后再计算 query 和 key 之间的内积得到 self-attention 的计算结果


 

前文提供了RoPE的基本实现,本文学习一下开源LLM中的RoPE的实现。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微风❤水墨

你的鼓励是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值