图像处理中目标函数各式各样,很难记住相应的求解方法,本文档今天就给大家稍微整理一下,方便大家查阅。
大约7~8种,先更新一部分,码公式太累了,剩下的抽空慢慢更新吧。
说明:参看本篇博客前,请参看我的上一篇博客:矩阵求导。不然对本篇博客很难理解或者一知半解。
##第一种
-
m i n 1 2 ∥ X ∥ F 2 + 1 2 ∥ X − M ∥ F 2 min\frac{1}{2}\left \| \mathbf{X} \right \|_{\mathbf{F}}^{2}+\frac{1}{2}\left \| \mathbf{X-M} \right \|_{\mathbf{F}}^{2} min21∥X∥F2+21∥X−M∥F2,已知 M ∈ R m × n \mathbf{M} \in\mathbf{R} ^{\mathbf{m\times n}} M∈Rm×n
不难发现目标函数是凸的,肯定存在一个 X 使得目标函数有最小值。对于这种无约束、凸函数,直接采用对目标函数求导进行求解。这就是检验你矩阵求导的本领了。
令 F = 1 2 ∥ X ∥ F 2 + 1 2 ∥ X − M ∥ F 2 \mathbf{F}=\frac{1}{2}\left \| \mathbf{X} \right \|_{\mathbf{F}}^{2}+\frac{1}{2}\left \| \mathbf{X-M} \right \|_{\mathbf{F}}^{2} F=21∥X∥F2+21∥X−M∥F2,对其求导并令求导的结果等于0
得 ∂ F ∂ X = X + ( X − M ) = 0 \frac{\partial \mathbf{F}}{\partial \mathbf{X}}=\mathbf{X}+(\mathbf{X-M})=0 ∂X∂F=X+(X−M)=0
推出: X = 1 2 M \mathbf{X}=\frac{1}{2}\mathbf{M} X=21M
经过上面的演示,相信大家都会这种问题的求解了。
##第二种
2.
m
i
n
λ
∣
X
∣
1
+
1
2
∥
X
−
M
∥
F
2
min\lambda \left | \mathbf{X} \right |_{1}+\frac{1}{2}\left \| \mathbf{X-M} \right \|_{\mathbf{F}}^{2}
minλ∣X∣1+21∥X−M∥F2,已知
M
∈
R
m
×
n
\mathbf{M} \in\mathbf{R} ^{\mathbf{m\times n}}
M∈Rm×n
这个问题和第一种明显不同,含有 L 1 L1 L1 范数,就不能直接求导来解决。那该怎么求解呢?不妨从简单到一般。
假设我们新的目标函数是:
m i n λ ∣ x ∣ + 1 2 ( x − m ) 2 min\lambda \left | x \right |+\frac{1}{2}(x-m)^{2} minλ∣x∣+21(x−m)2,这是高中的数学知识,应该难不倒大家。
①当 x ⩾ 0 x\geqslant 0 x⩾0时,$f=[x-(m-\lambda )]{2}+\frac{1}{2}m{2}-\frac{1}{2}(m-\lambda )^{2} $
②当 x ⩽ 0 x\leqslant 0 x⩽0时,$f=[x-(m+\lambda )]{2}+\frac{1}{2}m{2}-\frac{1}{2}(m+\lambda )^{2} $
解得: x ⩾ 0 x\geqslant 0 x⩾0时, x = { m − λ , m − λ ⩾ 0 0 , m − λ < 0 x = \left\{\begin{matrix} m-\lambda , &m-\lambda \geqslant 0 \\ 0,& m-\lambda < 0 \end{matrix}\right. x={m−λ,0,m−λ⩾0m−λ<0
解得: x < 0 x< 0 x<0时, x = { 0 , m + λ ⩾ 0 m + λ , m + λ < 0 x = \left\{\begin{matrix} 0 , &m+\lambda \geqslant 0 \\ m+\lambda,& m+\lambda < 0 \end{matrix}\right. x={0,m+λ,m+λ⩾0m+λ<0
综上, x = { m − λ , m > λ 0 , − λ ≤ m ≤ λ m + λ , m < − λ x=\left\{\begin{matrix} m-\lambda, & m> \lambda \\ 0,& -\lambda \leq m\leq \lambda \\ m+\lambda ,& m< -\lambda \end{matrix}\right. x=⎩⎨⎧m−λ,0,m+λ,m>λ−λ≤m≤λm<−λ
相信有些人已经看出眉目来了,这个简单的例子就是上面目标函数中矩阵
X
X
X 的任意一个元素的求解方法。
具体的来说就是:
m i n λ ∣ X ∣ 1 + 1 2 ∥ X − M ∥ F 2 min\lambda \left | \mathbf{X} \right |_{1}+\frac{1}{2}\left \| \mathbf{X-M} \right \|_{\mathbf{F}}^{2} minλ∣X∣1+21∥X−M∥F2,已知 M ∈ R m × n \mathbf{M} \in\mathbf{R} ^{\mathbf{m\times n}} M∈Rm×n
= m i n ∑ i = 1 m ∑ j = 1 n [ λ ∣ x i j ∣ + 1 2 ( x i j − m i j ) 2 ] =min\sum_{i=1}^{m}\sum_{j=1}^{n}[\lambda \left | x_{ij} \right |+\frac{1}{2}(x_{ij}-m_{ij})^{2}] =min∑i=1m∑j=1n[λ∣xij∣+21(xij−mij)2]
= m i n ∑ λ ∣ x 11 ∣ + 1 2 ( x 11 − m 11 ) 2 + λ ∣ x 12 ∣ + 1 2 ( x 12 − m 12 ) 2 + . . . + λ ∣ x m n ∣ + 1 2 ( x m n − m m n ) 2 =min\sum \lambda \left | x_{11} \right |+\frac{1}{2}(x_{11}-m_{11})^{2}+\lambda \left | x_{12} \right |+\frac{1}{2}(x_{12}-m_{12})^{2}+...+\lambda \left | x_{mn} \right |+\frac{1}{2}(x_{mn}-m_{mn})^{2} =min∑λ∣x11∣+21(x11−m11)2+λ∣x12∣+21(x12−m12)2+...+λ∣xmn∣+21(xmn−mmn)2
对任意的 x i j x_{ij} xij 都要取到最小值时,整个目标函数才能取得最小值。所以有:
综上, x i j = { m i j − λ , m i j > λ 0 , − λ ≤ m i j ≤ λ m i j + λ , m i j < − λ x_{ij}=\left\{\begin{matrix} m_{ij}-\lambda, & m_{ij}> \lambda \\ 0,& -\lambda \leq m_{ij}\leq \lambda \\ m_{ij}+\lambda ,& m_{ij}< -\lambda \end{matrix}\right. xij=⎩⎨⎧mij−λ,0,mij+λ,mij>λ−λ≤mij≤λmij<−λ
那编程到底怎么弄,难不成需要循环遍历吗?其实这个地方很简单,一条 matlab 语句就实现了。
$ \mathbf{X}=max(\mathbf{M}-\lambda ,0)+min(0,\mathbf{M+\lambda })$
好了,这种类型,相信你应该会了吧。
#以下内容以后再更新吧!
##第三种
- m i n λ ∣ X ∣ ∗ + 1 2 ∥ X − M ∥ F 2 min\lambda \left | \mathbf{X} \right |_{*}+\frac{1}{2}\left \| \mathbf{X-M} \right \|_{\mathbf{F}}^{2} minλ∣X∣∗+21∥X−M∥F2,已知 M ∈ R m × n \mathbf{M} \in\mathbf{R} ^{\mathbf{m\times n}} M∈Rm×n
这个问题又不同了,含有核范数。那该怎么求解呢?
##第四种
- m i n λ 2 ∥ X ∥ 2 2 + 1 2 ∥ b − A X ∥ 2 2 min\frac{\lambda }{2}\left \| \mathbf{X} \right \|_{\mathbf{2}}^{2}+\frac{1}{2}\left \| \mathbf{b-AX} \right \|_{\mathbf{2}}^{2} min2λ∥X∥22+21∥b−AX∥22
##第五种
- m i n λ 2 ∥ X ∥ F 2 + 1 2 ∥ B − A X ∥ F 2 min\frac{\lambda }{2}\left \| \mathbf{X} \right \|_{\mathbf{F}}^{2}+\frac{1}{2}\left \| \mathbf{B-AX} \right \|_{\mathbf{F}}^{2} min2λ∥X∥F2+21∥B−AX∥F2
##第六种
- m i n f ( x ) minf(x) minf(x) , s . t . g ( x ) = 0 s.t.g(x)=0 s.t.g(x)=0
拉格朗日或者ALM(增广拉格朗日)
##第七种
Lasso 问题,这个在子空间聚类、稀疏以及矩阵低秩相关的方向中常常遇到。
- m i n λ ∥ X ∥ 1 + 1 2 ∥ b − A X ∥ 2 2 min\lambda \left \| \mathbf{X} \right \|_{\mathbf{1}}+\frac{1}{2}\left \| \mathbf{b-AX} \right \|_{\mathbf{2}}^{2} minλ∥X∥1+21∥b−AX∥22
有两种解法。