数学推导2:图像处理中目标函数求解方法整理

图像处理中目标函数各式各样,很难记住相应的求解方法,本文档今天就给大家稍微整理一下,方便大家查阅。

大约7~8种,先更新一部分,码公式太累了,剩下的抽空慢慢更新吧

说明:参看本篇博客前,请参看我的上一篇博客:矩阵求导。不然对本篇博客很难理解或者一知半解。
##第一种

  1. m i n 1 2 ∥ X ∥ F 2 + 1 2 ∥ X − M ∥ F 2 min\frac{1}{2}\left \| \mathbf{X} \right \|_{\mathbf{F}}^{2}+\frac{1}{2}\left \| \mathbf{X-M} \right \|_{\mathbf{F}}^{2} min21XF2+21XMF2,已知 M ∈ R m × n \mathbf{M} \in\mathbf{R} ^{\mathbf{m\times n}} MRm×n

    不难发现目标函数是凸的,肯定存在一个 X 使得目标函数有最小值。对于这种无约束、凸函数,直接采用对目标函数求导进行求解。这就是检验你矩阵求导的本领了。

    F = 1 2 ∥ X ∥ F 2 + 1 2 ∥ X − M ∥ F 2 \mathbf{F}=\frac{1}{2}\left \| \mathbf{X} \right \|_{\mathbf{F}}^{2}+\frac{1}{2}\left \| \mathbf{X-M} \right \|_{\mathbf{F}}^{2} F=21XF2+21XMF2,对其求导并令求导的结果等于0

    ∂ F ∂ X = X + ( X − M ) = 0 \frac{\partial \mathbf{F}}{\partial \mathbf{X}}=\mathbf{X}+(\mathbf{X-M})=0 XF=X+(XM)=0

    推出: X = 1 2 M \mathbf{X}=\frac{1}{2}\mathbf{M} X=21M

经过上面的演示,相信大家都会这种问题的求解了。

##第二种
2. m i n λ ∣ X ∣ 1 + 1 2 ∥ X − M ∥ F 2 min\lambda \left | \mathbf{X} \right |_{1}+\frac{1}{2}\left \| \mathbf{X-M} \right \|_{\mathbf{F}}^{2} minλX1+21XMF2,已知 M ∈ R m × n \mathbf{M} \in\mathbf{R} ^{\mathbf{m\times n}} MRm×n

这个问题和第一种明显不同,含有 L 1 L1 L1 范数,就不能直接求导来解决。那该怎么求解呢?不妨从简单到一般。

假设我们新的目标函数是:

m i n λ ∣ x ∣ + 1 2 ( x − m ) 2 min\lambda \left | x \right |+\frac{1}{2}(x-m)^{2} minλx+21(xm)2,这是高中的数学知识,应该难不倒大家。

①当 x ⩾ 0 x\geqslant 0 x0时,$f=[x-(m-\lambda )]{2}+\frac{1}{2}m{2}-\frac{1}{2}(m-\lambda )^{2} $

②当 x ⩽ 0 x\leqslant 0 x0时,$f=[x-(m+\lambda )]{2}+\frac{1}{2}m{2}-\frac{1}{2}(m+\lambda )^{2} $

解得: x ⩾ 0 x\geqslant 0 x0时, x = { m − λ , m − λ ⩾ 0 0 , m − λ &lt; 0 x = \left\{\begin{matrix} m-\lambda , &amp;m-\lambda \geqslant 0 \\ 0,&amp; m-\lambda &lt; 0 \end{matrix}\right. x={mλ,0,mλ0mλ<0

解得: x &lt; 0 x&lt; 0 x<0时, x = { 0 , m + λ ⩾ 0 m + λ , m + λ &lt; 0 x = \left\{\begin{matrix} 0 , &amp;m+\lambda \geqslant 0 \\ m+\lambda,&amp; m+\lambda &lt; 0 \end{matrix}\right. x={0,m+λ,m+λ0m+λ<0

综上, x = { m − λ , m &gt; λ 0 , − λ ≤ m ≤ λ m + λ , m &lt; − λ x=\left\{\begin{matrix} m-\lambda, &amp; m&gt; \lambda \\ 0,&amp; -\lambda \leq m\leq \lambda \\ m+\lambda ,&amp; m&lt; -\lambda \end{matrix}\right. x=mλ,0,m+λ,m>λλmλm<λ

相信有些人已经看出眉目来了,这个简单的例子就是上面目标函数中矩阵 X X X 的任意一个元素的求解方法。
具体的来说就是:

m i n λ ∣ X ∣ 1 + 1 2 ∥ X − M ∥ F 2 min\lambda \left | \mathbf{X} \right |_{1}+\frac{1}{2}\left \| \mathbf{X-M} \right \|_{\mathbf{F}}^{2} minλX1+21XMF2,已知 M ∈ R m × n \mathbf{M} \in\mathbf{R} ^{\mathbf{m\times n}} MRm×n

= m i n ∑ i = 1 m ∑ j = 1 n [ λ ∣ x i j ∣ + 1 2 ( x i j − m i j ) 2 ] =min\sum_{i=1}^{m}\sum_{j=1}^{n}[\lambda \left | x_{ij} \right |+\frac{1}{2}(x_{ij}-m_{ij})^{2}] =mini=1mj=1n[λxij+21(xijmij)2]

= m i n ∑ λ ∣ x 11 ∣ + 1 2 ( x 11 − m 11 ) 2 + λ ∣ x 12 ∣ + 1 2 ( x 12 − m 12 ) 2 + . . . + λ ∣ x m n ∣ + 1 2 ( x m n − m m n ) 2 =min\sum \lambda \left | x_{11} \right |+\frac{1}{2}(x_{11}-m_{11})^{2}+\lambda \left | x_{12} \right |+\frac{1}{2}(x_{12}-m_{12})^{2}+...+\lambda \left | x_{mn} \right |+\frac{1}{2}(x_{mn}-m_{mn})^{2} =minλx11+21(x11m11)2+λx12+21(x12m12)2+...+λxmn+21(xmnmmn)2

对任意的 x i j x_{ij} xij 都要取到最小值时,整个目标函数才能取得最小值。所以有:

综上, x i j = { m i j − λ , m i j &gt; λ 0 , − λ ≤ m i j ≤ λ m i j + λ , m i j &lt; − λ x_{ij}=\left\{\begin{matrix} m_{ij}-\lambda, &amp; m_{ij}&gt; \lambda \\ 0,&amp; -\lambda \leq m_{ij}\leq \lambda \\ m_{ij}+\lambda ,&amp; m_{ij}&lt; -\lambda \end{matrix}\right. xij=mijλ,0,mij+λ,mij>λλmijλmij<λ

那编程到底怎么弄,难不成需要循环遍历吗?其实这个地方很简单,一条 matlab 语句就实现了。

$ \mathbf{X}=max(\mathbf{M}-\lambda ,0)+min(0,\mathbf{M+\lambda })$

好了,这种类型,相信你应该会了吧。

#以下内容以后再更新吧!

##第三种

  1. m i n λ ∣ X ∣ ∗ + 1 2 ∥ X − M ∥ F 2 min\lambda \left | \mathbf{X} \right |_{*}+\frac{1}{2}\left \| \mathbf{X-M} \right \|_{\mathbf{F}}^{2} minλX+21XMF2,已知 M ∈ R m × n \mathbf{M} \in\mathbf{R} ^{\mathbf{m\times n}} MRm×n

这个问题又不同了,含有核范数。那该怎么求解呢?

##第四种

  1. m i n λ 2 ∥ X ∥ 2 2 + 1 2 ∥ b − A X ∥ 2 2 min\frac{\lambda }{2}\left \| \mathbf{X} \right \|_{\mathbf{2}}^{2}+\frac{1}{2}\left \| \mathbf{b-AX} \right \|_{\mathbf{2}}^{2} min2λX22+21bAX22

##第五种

  1. m i n λ 2 ∥ X ∥ F 2 + 1 2 ∥ B − A X ∥ F 2 min\frac{\lambda }{2}\left \| \mathbf{X} \right \|_{\mathbf{F}}^{2}+\frac{1}{2}\left \| \mathbf{B-AX} \right \|_{\mathbf{F}}^{2} min2λXF2+21BAXF2

##第六种

  1. m i n f ( x ) minf(x) minf(x) , s . t . g ( x ) = 0 s.t.g(x)=0 s.t.g(x)=0

拉格朗日或者ALM(增广拉格朗日)

##第七种
Lasso 问题,这个在子空间聚类、稀疏以及矩阵低秩相关的方向中常常遇到。

  1. m i n λ ∥ X ∥ 1 + 1 2 ∥ b − A X ∥ 2 2 min\lambda \left \| \mathbf{X} \right \|_{\mathbf{1}}+\frac{1}{2}\left \| \mathbf{b-AX} \right \|_{\mathbf{2}}^{2} minλX1+21bAX22

有两种解法。

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微风❤水墨

你的鼓励是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值