- 本部分内容来自于《深入理解spark核心思想与源码分析》第二章
spark 场景
- 相比于Hadoop 的高吞吐,低响应的特点,spark将map.reduce计算的中间结果存在内存中,通过内存计算能极大地提高数据处理的速度,可以支持实时的场景
spark 优点
实时计算能力
易学(支持python scala R shell 交互,且支持SQL)
多个master 节点解决hadoop 单节点故障问题。
spark 模块
Spark Core : Spark Context 初始化;部署、存储、任务提交执行、计算
Spark SQL
Spark Graphx
SparkStreaming 流式计算处理能力
SparkContext
- Driver Application 执行与输出是通过SparkContext 完成的。通过DAGScheduler创建job,将RDD划分到不同的stage ,提交stage任务。
集群部署角度架构
主要三部分 Driver ,Cluster Manager,Worker
理解Driver 用来提交job 创建划分RDD
cluster 用来资源的分配与管理,即对当前的任务按照各个worker 目前计算资源进行分配,但是不关心各个worker上面的任务分配-
worker :创建excutor 将集群分配给自己的任务分发到各个excutor上