Book——电力系统规划与可靠性

本文详细介绍了电力系统可靠性的研究内容,包括发电系统和输电系统的可靠性分析,探讨了提高系统可靠性的方法,如增加冗余度和优化元件性能。此外,文章还阐述了不同类型的发电设施,如火电、水电和核电的特点和规划考虑。同时,提出了输电系统的负荷供应能力、状态空间转移和LOLP计算等概念。最后,讨论了配电系统的特性、停电分类和可靠性指标,以及电源规划的优化模型和电网规划的数学模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 绪论

目前对于电力系统可靠性的研究主要包括:

一. 为电力系统的发展规划进行的长期可靠性估计(已达到实用阶段);

二. 为制定每天或每周运行计划而进行可靠性预测(处于研究阶段)。

提高电力系统可靠性的方法:

发电系统:

一. 提高组成系统各元件的可靠性

二. 增加冗余度,即增加装机容量(备用容量)。

输电系统:

增加输电线路数或加大输电线路截面积。

(可以经济性进行联合研究)

研究方法:

解析法

解析法是将元件或寿命的过程模型化,然后通过数学方法进行可靠性分析,计算出可靠性指标。因此,解析法需要建立系统的数学模型,公式推导复杂,但所得结果准确而确定。

模拟法(蒙特卡洛法、仿真法)

通过模拟元件或系统的寿命过程,并经过规定的时间后进行统计,得出可靠性指标。模拟法不需要建立系统的数学模型,而是通过抽取随机数的办法模拟实际系统寿命过程,不需要复杂的公式推导。但计算结果与选取的系统年限有关,因此可能造成计算结果的偏差。

  1. 可靠性分析基础

2.1 元件可靠性

2.1.1 不可修复元件

  1. 故障函数

寿命:元件从投入使用到首次故障的时间

故障函数:元件的寿命T 小于等于时刻t的概率

  1. 故障率曲线

I 早期故障期

II 偶发故障期

III 耗损故障期

2.1.2 可修复元件

  1. 寿命流程图

双态模型:工作U &故障D

U——工作状态

D——故障停运

Tu——工作状态时间

Td——故障停运时间

修复率:表明可修复元件故障后修复的难易程度及效果。

  1. 元件状态转移

双态马尔科夫模型

2.1.3 元件(设备)状态划分

2.1.4 元件(设备)可靠性统计

2.2 可靠性分析的状态空间法

2.2.1 概念

状态空间是指一特定系统可能出现的全部状态集合。

单机系统

双机系统

2.2.2 状态空间的转移

2.2.3 可靠性计算

  1. 列出系统全部可能得状态

  1. 确定状态空间的转移模式和转移概率

  1. 计算状态概率

  1. 根据系统故障判据,将各种系统状态进行分类

  1. 计算可靠性指标

P 为状态概率行向量;

A 为转移矩阵。

2.3可靠性分析的模拟法

2.3.1 模拟法的概念

蒙特卡洛原理

2.3.2 模拟法的特点

  1. 不需要建立数学模型

  1. 可以得出某些指标的统计函数

  1. 可以处理故障、检修时间复杂的关系

  1. 可用于大系统

  1. 计算机程序简单

  1. 计算误差原则上与成正比

  1. 需要抽取随机数

2.3.3 随机数抽取

由于伪随机数造成的误差。

2.4 可靠性分析的其它方法

2.4.1 网络法

2.4.2 故障树法

  1. 电力系统可靠性分析

3.1 电力系统可靠性指标

3.1.1 一般可靠性

  1. 概率:可靠度和可用率

  1. 频率:单位时间内发生故障的平均次数

  1. 平均持续时间:首次故障的平均持续时间,故障的平均持续时间

  1. 期望值:一年中电力系统发生故障的期望天数

3.1.2 电力系统可靠性指标

  1. 电力不足概率 LOLP Loss of load probability

系统负荷(一天中最大负荷)超过系统中有效发电容量的概率。

  1. 电力不足频率 FLOL Frequency loss of load

单位时间(一般为一年)系统用户平均停电的次数。

  1. 电力不足持续时间 OLOL Duration loss of load

在指定时期内,用户停电的平均持续时间。

  1. 电力不足期望值 LOLE Loss of load expectation

在研究的时间内,由于供电不足而产生的负荷停电时间的平均值。

  1. 电量不足概率 LOEP Loss of energy probability

在研究时间内,由于供电不足而使用户停电的电量损失的期望值与该时间内用户所需全部电量的比值。

  1. 电量不足期望值 ELOE Expected loss of energy/ EENS Expected energy not serviced

在研究时间内,由于供电不足引起用户停电而损失的电能平均值。

3.2 发电系统可靠性分析

3.2.1 发电容量模型

  1. 容量概率模型

容量状态概率模型:发电机组或系统在t时刻处于某一容量状态的概率。

  1. 单机组模型

假设机组容量C MW,故障率为, 修复率为

  1. 双机组模型

机组1:容量C1,故障率,修复率

机组2:容量C2,故障率,修复率

3.2.2 负荷模型

最大负荷持续曲线:根据系统日最大负荷绘制的周、月、季度或年持续曲线。

3.2.3 LOLP计算

停电条件:

  1. 系统可用容量小于Ci

  1. 系统负荷大于Ci

3.3 输电系统可靠性分析

3.3.1 输电系统负荷供应能力 LSC

LSC:一个系统的发电容量通过输电网络后,能提供给负荷的最大功率。

特点:

  1. 开始阶段输电能力完全满足负荷要求。

  1. 受线路过负荷的限制,实际输电能力达不到理论上的极限值。

3.3.2 LSC的计算方法

  1. 试探法

给定系统负荷水平,计算每一母线的分配负荷值;

根据系统负荷水平,确定一种满足负荷需求的发电容量调度方案;

进行潮流计算;

检验是否存在过负荷线路,如有,则适当降低负荷水平,如无,则适当增大负荷,重复上述步骤;

尝试新的发电容量调度方案,并进行上述计算,观察是否能够提高LSC。

  1. 线性规划法

数学原理:求极值问题

目标函数:,Gi 表示第i母线的实际调度出力

约束条件:线路潮流线路额定传输容量,发电机出力发电机额定容量

  1. 输电系统可靠性计算的N-1规则

“单一故障可靠性检验”

系统故障类型:单重故障、多重故障。

电网规划中,一般只考虑单重故障,即所谓N-1。若考虑双重故障,则为N-2。

N-1规则下的LSC计算:

  1. 计算网络正常情况下的LSC及线路潮流;

  1. 依次停运网络中的一条独立支路,并计算停运后的LSC及支路潮流。

3.3.4 LOLP计算

在N-1原则下,一条线路故障即为一种系统状态.

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值