最近一直投身 复杂网络的各种问题 简单记录一下 我这一路关注的问题
开始学到用聚集系数来判别垃圾短信的发送号码 我就想临摹一个 用聚集系数在微信朋友关系中 判别微商 结果是失败的 一是取不到数据 二是 微商很多就是买给熟人 他的朋友不一定不是朋友 他的聚集系数就不一定低 所以失效
然后我就对聚集系数依旧念念不忘 寻找他与网络基本属性:度分布 中介性 介数 k-core值 等的关系 发现它与k-core的关系 k-core值的越大 在该k-core下其形成子图的平均聚集系数就越高 发现这个关系后 就想用这个关系来改进一些算法
就在基于聚集系数的社团发现上动脑筋 但用k-core替代聚集系数来做 效果并不好。。。
然后就不在这些基础概念上纠结 看到了基于模块度的社团发现 看后没有什么大感觉 通过社会网络 顺藤摸瓜摸到了社会网络 friendship network 觉得挺有意思 就找了些论文来看 有一篇paper 从上课打卡的记录中 按照多次相邻打卡的为朋友的假设 抽取了朋友关系 然后解析朋友网络中的局部结构 观察 随着朋友在一起的时间变长 局部结构的变化 两个结伴 三个结伴的变成最常见的局部结构
最近看了 利用商品在各国的贸易情况 做商品的相似关系 构建网络的论文 想自己也找一些实体来通过相似性构建网络 进行分析 想到了 模特和大牌的代言和时装秀 然而还没找到可用数据 想打用借书记录构建学生 知识储备的相似性关系网络 吴老师说这样构建不明显不直接 不新颖 他建议我做在文本中挖掘实体关系 比如共现关系!