关于学习方法

序言①:关于学习方法

在学习一个新的知识的时候,一定不要在意哪些概念性的东西,我们只需要知道它们的名字即可,有5点理由:

1:概念都是抽象的,都是把话简略来说的,并没有详细描述使用环境,不容易理解。

2:技术这种东西,一般都是国外传进来的,国内一般都是翻译国外的书籍,翻译得准不准确、能不能表达原作的思想暂且不说。最要命的一个,还是中文歧义太多。有可能翻译的人很准确的传达了原创的思想。然而,写成了文字,让你来理解,结果又变成了另一种味道!因为每个人经历不同,理解的东西也不同。

3:一般来说,新事物往往会颠覆我们以往的认知,所以在接触或学习一种新的事物时,我们的潜意识中,通常都是通过 联想和对比的方式来学习一种新的事物。也就是根据我们过去的一些认知,找到一些类似的东西。让我们更容易接受!然而,恰恰是这种对比的方式,导致我们常常对新的事物产生一种抵触的心理。因为它会推翻我们以往的认知。所以,无论是学习任一种新的东西,我们要抱着开放的心态去学习

4:既然是新事物,肯定会包含很多新的知识点,如果只通过读概念就可以学到的东西,研究人员还不如洗洗就睡了,还研究个毛线!

5:如果我们天天纠结于那些名字和概念,结局就是—越学越迷茫,心里越惶恐,感觉这也不会,那也不会。遇到这种情况,我常用的方法是:
①停止手上的一切工作,然后,在草纸上不加思所的,写下此时思维中的东西。

为什么要强调不加思索呢,因为这是一种瞬时记录法,记录的绝对是最接近真实的自己。就算是一些芝麻小事,只要是在我脑海里的,我都通通写下来。当我写完以后,我感觉到整个人很轻松,很舒畅,不再担心会忘记,如果那一天真的忘记了,我们还可以从这里看哈!

写完以后,并不意味着,我们就可以置之不理了。因为麻烦不解决永远都在那里。你这次不想办法去解决,下次再碰到类似的事情岂不是慌了。所以我们要进行第二步。

②整理、归类。
经过第一步后,写下来的东西肯定都是乱糟糟的,毕竟我们要求的写下最真实的的自己。这时候,我们要一条一条的去整理。你会发现一些很有意思的事情。比如:有很多事情都是类似的,或者是一些没必要的担心。我们把它们都整理,使事情明朗。

接下来,就要进行第三步了——分析。

③分析——找出哪些是一定要去做的

每个人的时间都是有限的,并不是所有的事情都要去做的。要学会取舍、抓重点、合作。还要懂得分析自己的状态,进而做战略的调整。只有结合自身状态的战略,才是好战略。

推荐一个非常实用的法则:二八法则

③最后就是——紧盯目标,干!干!干!

所以,如果你每天都在纠结那些概念性的东西,并没什么卵用!好比,你喜欢你的女神,光想有毛线用。一个字:

咱们要的是:撸起袖子就是干!

知识这种东西就是一种工具,就像用筷子,你今天不会,明天还不会?会了就永远会了。
只有在干的过程中,遇到问题,再思考,总结,再思考,反反复复,你才能进步。

序言②:关于读书

1、找一本适合自己的书——学会看目录

我们生于一个急躁的年代。急着出生,急着读书,急着毕业,急着结婚,急着生孩子……好像,一直都没有停下来好好思考过,就想赶鸭子上架一样。

读书也是一样,我们不能光听别人说这本书好,那本书也好,结果这本读读,那本读读,到头来什么都没学到。
一本书就像一碗鸡汤,可能这碗鸡汤别人喝了大补,自己喝了却是拉稀。别人看了,可能刚好弥补了他们的一些不足,而自己,在这一方面并没有缺失,所以,如果我们也去读了,那纯粹是浪费时间。

2、怎么去读书–跳读

当然,在现实中,我们是找不到一本能令人100%满意的书的。通常都是这样,这本书有些我们想要的,另一本书有些我们想要的。

所以,对于任何一本书,我们并不需要依次从头读到尾,只要找到我们想要的东西即可,快速找到我们的答案。如果你觉得这本书很值得一读,那么以后再抽时间细细研读即可。

so,明确你的目的,找到你想要的东西,学会跳读!说白了,就是抓你想要的重点。

3、带着你要解决的问题去读书—解决问题,并形成有效的战斗力 ###

在这个快速发展的社会,我们每个人都很忙!每个人的时间和精力都是有限的。我们为什么要去查询书籍,就是因为我们遇到了问题,需要解决。如何高效以及最大化的发挥我们有限的时间,是我们每个人应该考虑的问题。推荐的话,还是二八法则。

最后,无论是战略计划 还是 一本书 ,只有适合自己的,才是一个优质的计划,一本好书。 ##


已标记关键词 清除标记
相关推荐
<p> </p><p> 数据科学是一门内涵很广的学科,它涉及到统计分析、机器学习以及计算机科学三方面的知识和技能。本课程将深入浅出、全面系统地介绍了这门学科的内容。通过这门课程,同学可以了解并熟悉如下的开源工具:scikit-learn、statsmodels、TensorFlow、Pyspark等。 </p> <p> 本课程分为4个部分,18个章节。 </p> <p> ·             第一部分是最初的3章,主要介绍数据科学想要解决的问题、常用的IT工具Python以及这门学科所涉及的数学基础。 </p> <p> ·             第二部分是第4-7章,主要讨论数据模型,主要包含三方面的内容:一是统计中最经典的线性回归和逻辑回归模型;二是计算机估算模型参数的随机梯度下降法,这是模型工程实现的基础;三是来自计量经济学的启示,主要涉及特征提取的方法以及模型的稳定性。 </p> <p> ·             第三部分是接下来的8-15章,主要讨论算法模型,也就是机器学习领域比较经典的模型。这三章依次讨论了监督式学习、生成式模型以及非监督式学习。 </p> <p> ·             第四部分将覆盖目前数据科学最前沿的两个领域分别是大数据和人工智能。具体来说,第11章将介绍大数据中很重要的分布式机器学习,而最后两章将讨论人工智能领域的神经网络和深度学习。 </p>
<p style="text-align:left;"> <br /> </p> <p style="text-align:left;"> <span style="color:#E53333;"><strong>【课程介绍】</strong></span>  </p> <p style="text-align:left;">      Pytorch项目实战 垃圾分类 课程从实战的角度出发,基于真实数据集与实际业务需求,结合当下最新话题-垃圾分类问题为实际业务出发点,介绍最前沿的深度学习解决方案。 </p> <p style="text-align:left;">     从0到1讲解如何场景业务分析、进行数据处理,模型训练与调优,最后进行测试与结果展示分析。全程实战操作,以最接地气的方式详解每一步流程与解决方案。 </p> <p style="text-align:left;">     课程结合当下深度学习热门领域,尤其是基于facebook 开源分类神器ResNext101网络架构,对网络架构进行调整,以计算机视觉为核心讲解各大网络的应用于实战方法,适合快速入门与进阶提升。 </p> <p style="text-align:left;"> <strong><span style="color:#E53333;">【课程要求】</span></strong> </p> <p style="text-align:left;"> (1)开发环境:python版本:Python3.7+;<span style="color:#E53333;"> torch 版本:1.2.0+; torchvision版本:0.4.0+</span> </p> <p style="text-align:left;"> (2)开发工具:Pycharm; </p> <p style="text-align:left;"> (3)学员基础:需要一定的Python基础,及深度学习基础; </p> <p style="text-align:left;"> (4)学员收货:掌握最新科技图像分类关键技术; </p> <p style="text-align:left;"> (5)学员资料:内含完整程序源码和数据集; </p> <p style="text-align:left;"> (6)课程亮点:专题技术,完整案例,全程实战操作,徒手撸代码 </p> <p style="text-align:left;"> <br /> </p> <p style="text-align:left;"> <span style="color:#E53333;"><strong>【课程特色】</strong></span> </p> 阵容强大 <p style="text-align:left;"> <br /> </p> <p style="text-align:left;"> 讲师一直从事与一线项目开发,高级算法专家,一直从事于图像、NLP、个性化推荐系统热门技术领域。 </p> <p style="text-align:left;"> 仅跟前沿 </p> <p style="text-align:left;"> 基于当前热门讨论话题:垃圾分类,课程采用学术届和工业届最新前沿技术知识要点。 </p> <p style="text-align:left;"> 实战为先 </p> <p style="text-align:left;"> 根据实际深度学习工业场景-垃圾分类,从产品需求、产品设计和方案设计、产品技术功能实现、模型上线部署。精心设计工业实战项目 </p> <p style="text-align:left;"> 保障效果 </p> <p style="text-align:left;"> 项目实战方向包含了学术届和工业届最前沿技术要点 </p> <p style="text-align:left;"> 项目包装简历优化 </p> <p style="text-align:left;"> 课程内垃圾分类图像实战项目完成后可以直接优化到简历中 </p> <p style="text-align:left;"> <strong><span style="color:#E53333;">【课程思维导图】</span></strong> </p> <p style="text-align:left;"> <img src="https://img-bss.csdn.net/201912081323318969.png" alt="" /> </p> <p style="text-align:left;"> <br /> </p> <p style="text-align:left;"> <br /> </p> <p style="text-align:left;"> <strong><span style="color:#E53333;">【课程实战案例】</span></strong> </p> <p style="text-align:left;"> <br /> </p> <p style="text-align:left;"> <img src="https://img-bss.csdn.net/201912081326184463.png" alt="" /> </p> <p style="text-align:left;"> <br /> </p> <p style="text-align:left;"> <br /> </p>
<p class="ql-text-indent-1 ql-long-39788408" style="text-indent:29.3333px;font-size:11pt;color:#494949;"> <span class="ql-author-39788408" style="color:#000000;">人工智能</span><span class="ql-author-39788408" style="color:#000000;">作为现在最为火热的领域,使得机器学习被越来越多的人所了解。机器学习难学,主要的难度在于算法</span><span class="ql-author-39788408" style="color:#000000;">模型多不好理解,各种各样的工具不知道如何使用,实际项目不知道如何开发。</span><span style="color:#000000;">本门课程将系统入门机器学习,课程内容不光是对算法的学习,还包括诸如算法的评价,方法的选择,模型的优化,参数的调整,数据的整理,等等一系列工作。让大家对机器学习算法有个全面的了解,并</span><span style="color:#000000;">应用到你的实际项目中。</span> </p> <p> <span style="color:#337FE5;"><strong>整体课程设计</strong></span><strong></strong> </p> <p class="a" style="text-indent:21pt;"> 课程的所有内容都经过讲师的精心挑选。同时,在层次划分上,循序渐进,难易兼顾。让学员们更容易的入门。课程中既包含核心的基础知识,也有高级的进阶操作,做到了<span>“</span>老少皆宜<span>”</span>。 </p> <p> <span style="color:#337FE5;">课程分为基础篇,进阶篇和实战篇</span> </p> <p> <b>基础篇</b><span style="line-height:1.5;">:基础篇主要讲解高数基础。同时加入了很多</span><span style="line-height:1.5;">Python</span><span style="line-height:1.5;">入门算法,为之后自己动手做实验,打好基础。</span> </p> <p> <b>进阶篇:</b><span style="line-height:1.5;">之后是机器学习的核心,精选线性回归、逻辑回归、聚类算法、</span><span style="line-height:1.5;">EM</span><span style="line-height:1.5;">算法等等机器学习的经典算法。</span> </p> <p> <b>实战篇:</b><span style="line-height:1.5;">真正要掌握一门编程语言,仅仅学会分散的知识点是不够的,还必须要把知识点串联起来,做一些实际项目才能有更深的领悟与提高。我会通过</span><span style="line-height:1.5;">Kmeans</span><span style="line-height:1.5;">篮球数据分类这个具体的实战案例,带你综合运用前面所学的机器学习知识。</span> </p> <p> <img src="https://img-bss.csdnimg.cn/202006220524105596.jpg" alt="" /> </p>
<p> <strong><span> </span></strong> </p> <p class="ql-long-16800510"> <span style="color:#333333;"><strong><span style="color:#333333;"> </span></strong></span> </p> <p class="ql-long-24357476"> <span style="color:#E53333;font-size:14px;">每天前100人再送5门编程课!</span> </p> <p class="ql-long-24357476"> <span style="color:#E53333;font-size:14px;">AI+5门300元课程+社群闭门分享会</span> </p> <p class="ql-long-24357476"> <span style="color:#E53333;font-size:14px;">源码开源下载:<a href="https://github.com/DjangoPeng/keras-101/tree/master/code_samples">https://github.com/DjangoPeng/keras-101/tree/master/code_samples</a></span> </p> <p> <br /> </p> <h3 class="ql-long-26664262"> <div class="ql-long-26664262"> <span style="font-size:14px;color:#337FE5;">【为什么学AI】</span> </div> </h3> <p class="ql-long-26664262"> <span style="font-size:14px;">归功于近年来大规模数据和硬件计算能力的大幅度提升,人工智能的概念近两年一直是市场追捧的对象。目前各大厂都争先恐后地布局AI,落地各类AI的的商业应用,也随之打响了一场激烈的人才争夺战。长远来看,越快将 AI 用于自己的工作中就能越早体会到AI带来的收益。</span> </p> <p> <br /> </p> <p> <br /> </p> <p> <strong><span style="font-size:14px;color:#337FE5;">【讲师介绍】</span></strong> </p> <p class="ql-long-16800510"> <span style="font-size:14px;">彭靖田 Google Developer Experts。</span> </p> <p class="ql-long-16800510"> <span style="font-size:14px;">曾为 TensorFlow Top级 的贡献者,著书《深入理解TensorFlow》,是国内第一本深度剖析 Google AI 框架的畅销书。</span> </p> <p class="ql-long-16800510"> <span style="font-size:14px;">曾从0到1深入参与了华为 2012 实验室深度学习平台和华为深度学习云服务的设计与研发工作。</span> </p> <p class="ql-long-16800510"> <br /> </p> <h3 class="ql-long-26664262"> <p> <span style="color:#337FE5;"><span style="font-size:14px;color:#337FE5;">【课程设计】</span></span> </p> </h3> <p class="ql-long-26664262"> <br /> </p> <p class="ql-long-26664262"> <span style="font-size:14px;">课程内容基于最新的Keras版本(你也可以使用 TensorFlow 2 的 tf.keras 模块),其中有大量独家解读、案例,以及不少讲师一线实战多年的方法论和深度思考。同时,在层次划分上,难易兼顾,循序渐进。既有核心的基础知识,也有高级的进阶操作,尽量做到“老少皆宜”。</span> </p> <p class="ql-long-26664262"> <br /> </p> <p class="ql-long-26664262"> <span style="font-size:14px;"><strong>课程分为基础篇、入门篇和实战篇:</strong></span> </p> <p class="ql-long-26664262"> <span style="font-size:14px;"><br /> </span> </p> <p class="ql-long-26664262"> <strong><span style="font-size:14px;">一、基础篇:</span></strong> </p> <p class="ql-long-26664262"> <span style="font-size:14px;">主要讲解人工智能发展史和深度学习脱颖而出的原由,以及神经网络的基础概念、理论实现、优化原理和计算方法。</span> </p> <p class="ql-long-26664262"> <span style="font-size:14px;"><br /> </span> </p> <p class="ql-long-26664262"> <strong><span style="font-size:14px;">二、入门篇:</span></strong> </p> <p class="ql-long-26664262"> <span style="font-size:14px;">主攻快速上手,通过7个小节让你从0到1实现环境搭建、模型优化,直接试水2个实战项目。同时,增强AI的理论学习,系统掌握机器学习3大分支、模型评估方法、数据预处理常用手段与过拟合问题的解决方案。</span> </p> <p class="ql-long-26664262"> <span style="font-size:14px;"><br /> </span> </p> <p class="ql-long-26664262"> <strong><span style="font-size:14px;">三、实战篇:</span></strong> </p> <p class="ql-long-26664262"> <span style="font-size:14px;">通过4个实战全面掌握深度学习理论与实现,涵盖目标检测、图像分类、可视化和可解释性学习、迁移学习、特征提取、数据增强等。带你综合运用前面所学的所有知识,逐渐熟练AI开发流程与技能。</span> </p> <p> <br /> </p> <p> <br /> </p> <p class="MsoNormal"> <br /> </p> <p> <img src="https://img-bss.csdn.net/202002271330419257.png" alt="" /> </p> <p> <span style="font-size:14px;">课程包含思维导图上的所有内容(价值199元)前500名立减100元,仅99元买完就能学!</span> </p>
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页