最大矩形纸片

文章讨论了如何在一张半边完整的网格纸上,根据残存部分的高度,找出能剪出的最大面积矩形。通过编程实现,输入纸片完整边的长度N和每列残存高度,输出最大面积。示例代码展示了C++解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

描述
一张半边参差不齐的网格纸(网格边长均为1),有一边是完整没有破损的。现要从中剪出一片面积最大的矩形纸片。
给定网格纸中完整边的长度N(1≤N≤1000000),以及网格中每一列残存部分的高度(1≤高度≤10000),输出能够剪出的最大矩形纸片面积。

例如: N=6,每一列残存部分的高度依次为3、2、1、4、5、2,如下图所示:

可以发现,沿着红色框可以剪出的矩形纸片面积最大,为8,所以输出8.

输入

第一行输入一个正整数N(1≤N≤1000000),表示纸片完整边的长度;
第二行输入N个正整数(1≤正整数≤10000),表示每列格子残存部分的高度,两个正整数之间用一个空格隔开。

输出

输出一个正整数,表示能够剪出的最大矩形纸片面积。

样例输入
6
3 2 1 4 5 2
样例输出
#include<bits/stdc++.h>
using namespace std;
int main()
{
	int result=0;
	int n;
	cin>>n;
	int arr[n+10];
	for (int i=0;i<n;i++)
		cin>>arr[i];
	for (int i=0;i<n;i++)
	{
		int height=arr[i];
		for (int j=i;j<=n;j++)
		{
			if (arr[j]<height)
				height=arr[j];
			result=fmax(result,(j-i+1)*height);
		}
	}
	cout<<result;
	return 0;
}
8
### 关于最大矩形面积问题的测试用例 对于 LeetCode 上的最大矩形面积问题(如题目编号 84 和 85),可以通过设计多种场景来验证算法的正确性和鲁棒性。以下是几个典型的测试用例及其说明: #### 测试用例 1:基本输入 ```python heights = [2,1,5,6,2,3] ``` 此用例对应的是标准柱状图结构,其中存在多个高度不同的柱体。预期输出应为 `10`,因为可以形成一个高为 `5` 的矩形,其宽度为 `2`。 #### 测试用例 2:单个柱体 ```python heights = [4] ``` 当数组仅包含一个元素时,最大矩形面积即为其自身的高度乘以宽度 `1`。因此,输出应为 `4`[^3]。 #### 测试用例 3:全相同高度 ```python heights = [2, 2, 2, 2] ``` 在这种情况下,所有柱体具有相同的高度,形成的矩形面积等于总宽度乘以任意柱体的高度。最终结果为 `8`。 #### 测试用例 4:递增序列 ```python heights = [1, 2, 3, 4] ``` 随着高度逐渐增加,需确保单调栈逻辑能正确处理此类情况下的最大矩形计算。此处的结果为 `6`,由最后一个柱体决定范围内的最优解。 #### 测试用例 5:递减序列 ```python heights = [4, 3, 2, 1] ``` 与递增相反,在下降趋势下同样考验单调栈实现是否稳健。这里返回值也是 `6`,源于初始阶段较大的数值提供了更优的选择机会。 #### 测试用例 6:极端边界条件 ```python heights = [] ``` 空列表作为特殊情况之一,应当直接返回零值表示不存在任何有效区域可构成矩形形状。 --- ### 实现代码片段 基于上述分析,下面给出针对 **LeetCode 题目 84** 的 Python 实现版本: ```python def largestRectangleArea(heights): stack = [] max_area = 0 index = 0 while index < len(heights): if not stack or heights[index] >= heights[stack[-1]]: stack.append(index) index += 1 else: top_of_stack = stack.pop() width = (index - stack[-1] - 1) if stack else index area_with_top = heights[top_of_stack] * width max_area = max(max_area, area_with_top) while stack: top_of_stack = stack.pop() width = (index - stack[-1] - 1) if stack else index area_with_top = heights[top_of_stack] * width max_area = max(max_area, area_with_top) return max_area ``` --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值