官方文档:https://tensorflow.google.cn/lite/guide?hl=zh_cn
TensorFlowLite是专为移动端开发的深度学习框架,这个框架在windows上依然可以使用。
编译:
TF NoiseSuppression依赖于tf lite库,编译方法:
-
进入lite目录tensorflow\lite
-
执行cmake命令编译对应平台的lite库
以win32为例:
cmake ../tensorflow/tensorflow/lite -G"Visual Studio 16 2019" -A"Win32",生成一个WIN32的VS项目,cmake在生成VS项目时会一并将tf lite的依赖一并下载配置,编译生成tensorflow-lite.lib静态库。
引入工程:
只需要引入Lite目录下的.h文件即可,引入tensorflow-lite.lib库
使用方法:
//读取模型内容
std::unique_ptr<tflite::FlatBufferModel> model_ = tflite::FlatBufferModel::BuildFromFile(modelPath.c_str());
if (!model_)
{
throw "build model error!";
}
tflite::ops::builtin::BuiltinOpResolver resolver;
tflite::InterpreterBuilder(*model_, resolver)(&