c++、python混合编程(c++调用tensorflow lite转换模型)

这篇博客介绍了如何在Windows环境下,使用Visual Studio 2015进行C++和Python的混合编程,目的是在C++程序中调用Python训练的TensorFlow Lite神经网络模型进行数据预测。详细步骤包括环境配置、VS的设置以及C++代码中执行Python脚本的实现。
摘要由CSDN通过智能技术生成

1.混合编程的目的

为了在C++主程序中调用,python训练好的神经网络模型,来预测数据。

2.环境

1.win10,
2.vs2015
3.python3.7

3.在VS中配置环境和库

在这里插入图片描述
说明:我的python使用anaconda虚环境安装。
1.右击项目->属性->VC++目录
1)包含目录:
Python安装路径/include
2)库目录:
Python安装路径/libs

2.右击项目->属性->连接器->输入->附加依赖库
在这里插入图片描述
1.debug下:
python安装目录/libs/python37.lib
2.release下:
python安装目录/libs/python37_d.lib
请注意:
1、debug配置的时候可能没有python37_d.lib,那就把python37.lib复制一个,然后重命名为python37_d.lib就可以啦
2、如果一直报错,但是包含头文件等都没有问题,那么你需要看一下你的python是32位

在ESP32上运行TensorFlow Lite模型通常涉及到几个步骤: 1. **下载模型**:首先从TensorFlow官方网站或其他来源获取经过优化的小型版本的TensorFlow Lite模型。这个模型应该适合嵌入式设备的资源限制。 2. **准备模型文件**:使用`tf.lite.Interpreter`类加载模型文件。这通常涉及创建一个`Interpreter`实例,并提供模型路径给`load_delegate()`函数(如果使用特定的加速器,如NEON或GPU Delegate)。 ```python import tensorflow as tf interpreter = tf.lite.Interpreter(model_path="model.tflite") ``` 3. **解析模型输入/输出**:查看模型的输入和输出详情,以便在实际应用中提供正确的数据格式。`get_input_details()`和`get_output_details()`方法可以得到这些信息。 4. **预处理输入数据**:根据模型需求准备好输入数据,将其转换模型期望的格式并传递给`set_tensor()`方法。 5. **运行推理**:调用`invoke()`方法执行模型预测。这会根据模型结构和输入数据计算出结果。 6. **解读输出**:从模型输出中提取有用的信息,这可能需要依据模型的架构来解析。 7. **部署到ESP32**:如果你是在编写用于ESP32的固件或程序,确保使用支持的编程语言(如C++、MicroPython等),并将上述步骤融入到相应的循环或实时处理流程中。 请注意,由于ESP32的资源有限,可能会遇到内存管理的问题,因此需要针对模型大小和性能进行优化。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

菜菜菜菜菜菜菜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值