常数变易法大揭秘

目录

常数变易法大揭秘,深度思考之拉格朗日---主讲人:林耿超

引言:

正文:

深度思考的过程:

总结:


常数变易法大揭秘,深度思考之拉格朗日---主讲人:林耿超

引言:

         各位老师的和各位大佬们下午好!我是本期高数读书会的主讲人林耿超,我讲的主题是<常数变易法大揭秘>.在我们学数学的过程中,大家有没有发现有些人很用功,并且花很多时间去学高数,花很多时间刷题可是他们成绩反而并不理想,而有些人花的时间并不多不多,但是成绩却很好,大家有没有想过原因是什么?而我认为的原因就是他们的思考深度不同,花很多时间来学但一直止于表面和仅仅停留在老师所讲的东西当然学不好,就相当与一直在长时间低效率地做功,高手却可以在比较短的时间内进行深度思考,也就是短时间内就做了大量的功,很快就可以看到问题的本质,当然在座的各位肯定都是高手啦,不然怎么会来参加这读书会呢?

正文:

       那我呢讲深度思考肯定不能只讲深度思考,那未免也太无聊太抽象了,那我们就来讲讲一些具象的东西.我会用一个数学媒介来演绎深度思考的过程,这个数学媒介就是曾经拉格朗日花了十一年对常数变易法的研究过程,那我们今天就用一个小时来历史重游,体验一把拉格朗日的深度思考.

在开始之前我先放出百度百科的一段话:

而我今天要讲的就是拉格朗日曾经的思考过程???大家就会好奇我这个过程是哪里来的???

我们结尾再来揭晓答案.

       在我学习"一阶非齐次线性微分方程"的时候

形如

                                         

想要求解它,当时老师讲到要用一个重型杀伤性武器,就是这一大坨公式:

            

而这个公式怎么推导的呢?

首先一阶线性微分方程的一般形式是

                                           

如果Q(x)=0,那么这个式子就叫做”一阶齐次线性微分方程”;如果Q(x)!=0,那这个式子就叫做”一阶非齐次线性微分方程”.

为了求解非齐次方程的通解(也就是推导出重型杀伤性武器),我们应该先求解对应的齐次方程

                                     

的通解,这是一个可以分离变量的方程,分离变量得到:

                                        

然后两边同时求积分得到:

                          

最终得到齐次方程的通解:

                                    

这时,我们为了求解一阶非齐次线性微分方程,高数书中常数变易法就莫名其妙的跳出来了,它将常数C变易为一个关于x的函数u(x),通解就变成:

                     

然后把这个方程带入原方程

                                      

就可以解得

                                

然后再带回去就得到了我们的重型杀伤性武器

                            

大家就会发现这个常数C直接换成u(x)简直太突然了,太莫名奇妙了,完全不知道拉格朗日怎么想到的啊,那深度思考就开始了,我要想明白为什么要把常数C换成u(x)

深度思考的过程:

首先呢我们知道求齐次方程的通解是用到分离变量的方法,那我求非齐次方程的通解也试试看呗,我觉得当时拉格朗日应该最开始也是这么想的

我们对非齐次方程

                                 

尝试分离变量得到

                              

就会发现因为Q(x)!=0,P(x)!=0,这个y是无论如何都不可能放到左边去的,那我就在想y是一个关于x的函数,如果整个函数不能分离变量的话,那我先把y这个函数拆分为两部分,那只分离这函数的其中一部分行不行呢?

我这里先尝试简单的函数拆分

               y=u(x)*x  (例如y=(x+1)^2,可以变成y=[(x+1)^2]/x *x,x!=0)

那么

                                 

原方程就变成

                             

分离变量得到

                              

看到这个式子发现还是不行啊,但是呢如果(u+P(x)ux)=0岂不就成了!!!然后我们就发现u肯定不能等于0,那就想想(1+P(x)x)能不能等于0咯,显然是不行的,唉,那我们再对这个式子进行深度思考能发现什么东西

                                                    1+P(x)x

P(x)是原方程给定的,我们无法控制它,但是x是我们刚刚拆分函数时拆出来的,哎哎哎,这就有一个灵感,要是我们把原来的那个y拆出一个v(x),我们控制这个v(x),使得这个v(x)可以让我们的1+P(x)v(x)=0,不就大功告成了吗!(我估计当时拉格朗日也是这么想的)

说干就干,我们把y写成如下形式:

           y=u(x)v(x) (记住这里的v(x)我们是可以随心所欲地控制的)

那么

                           

原方程就变成

                      

我们再尝试一下分离变量

                            

成立岂不就成功了吗

这里u显然是不能等于0的,但是我们刚刚不是说过了吗,这里的v是我们可以人为控制的,那我们其实可以轻而易举的控制v使得

                              

成立,等等!!!大家发现啥了,这个式子是不是就是一个”一阶齐次线性微分方程”,那它的通解不就可以轻而易举的解出来是

                              

那么真相大白,原来当年拉格朗日根本就不是把常数C换成了u(x),而是拿出了y里面的

                                     

让剩下的u(x)去分离变量进行求解

说到这,大家是不是就会发现”常数变易法”这个名字好像并不太对,我愿称之为”提取控制函数法”

最后我们走完全程

                              

两边积分得到

                           

然后带回y=uv得到

                                 

本次思考过程完美结束

其实呢这是不是拉格朗日曾经的思考过程我也不知道,这其实是我阅读了很多文献自己推断出<拉格朗日想出”常数变易法”>的最合理的过程.

在结尾之前我来扩展一些内容,现在如果我是拉格朗日,那我已经会了”一阶线性非齐次方程”的求解,还会”一阶齐次方程”的求解,最重要的我还会了常数变易法的本质原理,那当我们遇到更高阶的方程应该如何求解呢?

形如:

那我们还可以用到常数变易法的思想,令y=uv,由莱布尼兹公式可以得到:

带回原方程得到:

其中Mi(x) 为关于x的多项式,也是一个类似于u前面括号里的式子.

然后可以用常数变易法相同的思想,令:

     

那么现在就剩下:

            

那我们就把一个”n阶线性非齐次方程”求解的问题转变成了”n阶线性齐次方程”和”n-1阶线性非齐次方程”求解的问题,只要我们一直这样剥洋葱一层一层剥下去,最终就可以变成0阶.

总结:

    想学好高数其实本质上就是加强思考深度,这一期高数读书会我们历史重游,重新走了一遍拉格朗日大佬的思考过程,如果大家有收获那将是我的荣幸,祝大家事业蒸蒸日上,数学越学越轻松

参考文献:

1.高等数学第七版上册

2.常数变易法的“前世今生”

3.常数变易法的解释

4.百度百科,常数变易法

英文版 内容: 第0章 基础知识 1.多复变初步 柯西公式及应用 多变量 魏尔斯特拉斯定理及其推论 解析簇 2.复流形 复流形 子流形与子簇 De Rham和Dolbeault上同调 复流形上的积分 3.层和上同调 起源:米塔一列夫勒问题 层 层的上同调 De Rham定理 Colbeault定理 4.流形的拓扑 闭链的相交 庞加莱对偶 解析闭链的相交 5.向量丛、联络和曲率 全纯复向量丛 度量、联络和曲率 6.紧致复流形的调和理论 霍奇定理 霍奇定理I的证明??局部理论 霍奇定理II的证明??全局理论 霍奇定理的应用 7.Kahler流形 Kahler条件 霍奇恒等式和霍奇分解 Lefschetz分解 第1章 复代数簇 1.除子与线丛 除子 线丛 线丛的陈类 2.消灭定理及推论 小平消灭定理 超平面截面的Lefsclaetz定理 定理 (1,1)类的Lefsclaetz定理 3.代数簇 解析簇和代数簇 簇的次数 代数簇的切空间 4.小平嵌入定理 线丛和到投影空间的映射 胀开 小平定理的证明 5.格拉斯曼理论 定义 胞腔分解 Schubert微积分 万有丛 Plucker嵌入 第2章 Riemann曲面和代数曲线 1.预备知识 Riemann曲面的嵌入 Riemann-Hurwitz公式 亏格公式 G=1,1的情况 2.阿贝尔定理 阿贝尔定理??第一种描述 第一互反定律及推论 阿贝尔定理??第二种描述 雅可比反演问题 3.曲线的线性系统 互反定律II Riemann-Roch公式 典范曲线 特殊线性系统I 超椭圆曲线与黎曼点数 特殊线性系统II 4.Plucker公式 伴随曲线 分歧 广义Plucker公式I 广义Plucker公式II Weierstrass点 平面曲线的Plucker公式 5.对应 定义和公式 空间曲线的几何性 特殊线性系统III 6.复环面和Abel簇 黎曼条件 复环面上的线丛 函数 Abel簇上的群结构 固有公式 7.曲线及曲线的行列式 初步知识 黎曼定理 黎曼奇异定理 特殊线性系统IV Torelli定理 第3章 深入技巧 1.分布与流 定义;幂公式 平滑与整齐 流的上同调 2.流在复分析上的应用 解析簇相关的流 解析簇的相交数 莱维扩展与常态映射定理 3.陈类 定义 高斯博内公式 关于全纯向量丛陈类讨论 4.不动点与剩余公式 莱夫谢茨不动点公式 全纯莱夫谢茨不动点公式 博特剩余公式 广义Hirzebruch-Riemann-Roch公式 5.谱序列及其应用 滤子化双重复形的谱序列 超上同调 二类微分 勒雷谱序列 第4章 曲面 1.初步知识 2.相交数、从属公式与Riemann-Poch 胀开与收缩 二次曲面 三次曲面 2.有理映射 有理和双有理映射 曲线与代数面 面之间双有理映射的结构 3.有理曲面I 诺特引理 有理直纹面 广义有理曲面 极小度曲面 最大类曲线 施泰纳构造 Enriques-Petri定理 4.有理曲面II Castelnuovo-Enriques定婴 Enriques曲面 修正的三次曲面 中两个二次曲面的相交 5.无理曲面 阿尔巴内塞映射 无理直纹曲面 椭圆曲面简介 小平数和分类定理I 分类定理II K-3曲面 诺特曲面 6.诺特公式 平滑超平面的诺特公式 胀开子流形 曲面的寻常奇点 一般曲面的诺特公式 几个例子 曲面的孤立奇点 第5章 留数(残数) 1.留数的基本性质 定义和上同调解释 整体留数定理 变换则与局部对偶性 2.留数的应用 相交数 有限全纯映射 平面投影几何中的应用 3.交换同调代数应用初步 交换代数 同调代数 科斯居尔复形及其应用 凝聚层的简短游程 4.整体对偶 整体扩展 广义整体对偶定理解释 整体扩展和带孤立零点的向量场 整体对偶和曲面上点的剩余 模的扩张 曲面上的点和秩2向量丛 留数和向量丛 第6章 二次线丛 1.二次曲面初步 二次曲面的秧 二次曲面中的线性空间 二次曲面的线性系统 五个锥线论问题 2.二次线丛介绍 格拉斯曼G(2,4)几何 线丛 二次线丛和伴随库默尔曲面I 二次线丛的奇异线 两个构形 3.二次线丛的线 二次线丛的线簇 线簇上的曲线 两个修正构形 群则 4.二次线丛:Reprise 二次线丛和伴随库默尔曲面II 二次线丛的有理性 索引
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值