6-Advanced 常数变易法求解高阶线性微分方程

6-Advanced 常数变易法求解高阶线性微分方程

什么是常数变易法?

有以下一阶线性微分方程:
y ′ + P ( x ) y = Q ( x ) (1) y' + P(x)y = Q(x) \quad \text{(1)} y+P(x)y=Q(x)(1)
其中, P ( x ) > 0 P(x) > 0 P(x)>0 Q ( x ) > 0 Q(x) > 0 Q(x)>0

解齐次方程

若解其对应的齐次方程:
y ′ + P ( x ) y = 0 (2) y' + P(x) y = 0 \quad \text{(2)} y+P(x)y=0(2)
则易有:
y = C e − ∫ P ( x ) d x ( C ≠ 0 ) y = Ce^{-\int P(x)dx} \quad(C\neq0) y=CeP(x)dx(C=0)
即为齐次方程的通解.

这时,我们可以用常数变易法来求非齐次方程(1)的通解,即将齐次方程(2)的通解中的常数,变易为一个关于未知函数的函数。变易之后,非齐次方程通解表示如下:
y = u ( x ) e − ∫ P d x (3) y = u(x)e^{-\int Pdx} \quad \text{(3)} y=u(x)ePdx(3)

解非齐次方程

于是将该通解形式代入原方程(1),可以解得:
u ( x ) = ∫ Q ( x ) e ∫ P d x d x + C u(x) = \int Q(x)e^{\int Pdx}dx + C u(x)=Q(x)ePdxdx+C
将上式代入(3)式,即可解得:
y = e − ∫ P d x ( ∫ Q ( x ) e ∫ P d x d x + C ) y = e^{-\int Pdx} \left( \int Q(x)e^{\int Pdx}dx + C \right) y=ePdx(Q(x)ePdxdx+C)
这就是所谓常数变易法。

不准确的直观理解

对于常数变易法,以前的理解是:

既然 y = C e − ∫ P d x y = Ce^{-\int Pdx} y=CePdx 可以使齐次方程 y + P ( x ) y = 0 y + P(x)y = 0 y+P(x)y=0 成立,那么在其基础上增添一个函数,就应该使得该方程运算结果多出一个与自由项相关的余项 Q ( x ) Q(x) Q(x),所以可以使用常数变易法。

这样的理解是基于表面形式做出的一个解释,然而还是不能够明确地说明这个方法的正当性与正确性。所以我们需要进一步探究其内在的原理。

常数变易法的原理

基本思想

容易理解,我们可以将任意函数表示成为两个函数之积,即:
y ( x ) = u ( x ) ⋅ v ( x ) (4) y(x) = u(x) \cdot v(x) \quad \text{(4)} y(x)=u(x)v(x)(4)
y ( x ) y(x) y(x) 求导,得:
y ′ ( x ) = u ′ ( x ) v ( x ) + u ( x ) v ′ ( x ) y'(x) = u'(x)v(x) + u(x)v'(x) y(x)=u(x)v(x)+u(x)v(x)

实现过程

y ( x ) = u ( x ) v ( x ) y(x) = u(x)v(x) y(x)=u(x)v(x) y ′ ( x ) = u ′ ( x ) v ( x ) + u ( x ) v ′ ( x ) y'(x) = u'(x)v(x) + u(x)v'(x) y(x)=u(x)v(x)+u(x)v(x) 代入非齐次方程(1),整理得到:
u ′ ( x ) v ( x ) + u ( x ) ⋅ [ v ′ ( x ) + P ( x ) v ( x ) ] = Q ( x ) (5) u'(x)v(x) + u(x) \cdot [v'(x) + P(x)v(x)] = Q(x) \quad \text{(5)} u(x)v(x)+u(x)[v(x)+P(x)v(x)]=Q(x)(5)
由解一阶线性微分方程的常用方法分离变量法容易想到,如果没有 u ( x ) ⋅ [ v ′ ( x ) + P ( x ) v ( x ) ] u(x) \cdot [v'(x) + P(x)v(x)] u(x)[v(x)+P(x)v(x)] 这一项,我们就可以简便地利用分离变量法进行计算。

现在单独考察 u ( x ) ⋅ [ v ′ ( x ) + P ( x ) v ( x ) ] u(x) \cdot [v'(x) + P(x)v(x)] u(x)[v(x)+P(x)v(x)] ,我们可知 u ( x ) u(x) u(x) 是不确定的,不能用来确保 u ( x ) [ v ′ ( x ) + P ( x ) v ( x ) ] ≡ 0 u(x)[v'(x) + P(x)v(x)] \equiv 0 u(x)[v(x)+P(x)v(x)]0

考虑另一个因式 v ′ ( x ) + P ( x ) v ( x ) = 0 v'(x) + P(x)v(x) = 0 v(x)+P(x)v(x)=0,显然 v ( x ) v(x) v(x) 是不确定的,故 v ′ ( x ) + P ( x ) v ( x ) v'(x) + P(x)v(x) v(x)+P(x)v(x)这一项可以任意取值,假设
v ′ ( x ) + P ( x ) v ( x ) ≡ 0 (6) v'(x) + P(x)v(x) \equiv 0 \text{(6)} v(x)+P(x)v(x)0(6)
观察式(6),可以看到其形式与式(2)基本一致。

对式(6)进行求解,可以得到其通解形式:
v ( x ) = C 1 ⋅ e − ∫ P ( x ) d x (7) v(x) =C_1 \cdot e^{-\int P(x)dx} \quad \text{(7)} v(x)=C1eP(x)dx(7)
将所得通解代入(4),则
y ( x ) = u ( x ) ⋅ C 1 ⋅ e − ∫ P ( x ) d x (8) y(x) = u(x) \cdot C_1 \cdot e^{-\int P(x)dx} \quad \text{(8)} y(x)=u(x)C1eP(x)dx(8)
将(7)式代入(5)式,得到:
u ’ ( x ) ⋅ C 1 ⋅ e − ∫ P ( x ) d x = Q ( x ) (9) u’(x)\cdot C_1\cdot e^{-\int P(x)dx} = Q(x) \quad \text{(9)} u(x)C1eP(x)dx=Q(x)(9)
使用分离变量法,容易解得:
u ( x ) = 1 C 1 ∫ Q ( x ) e ∫ P ( x ) d x d x + C 2 (10) u(x) =\frac{1}{C_1} \int Q(x)e^{\int P(x)dx}dx + C_2 \quad \text{(10)} u(x)=C11Q(x)eP(x)dxdx+C2(10)
将(7)和(9)同时代入式(4),则
y ( x ) = e − ∫ P ( x ) d x ( ∫ Q ( x ) e ∫ P ( x ) d x d x + C 1 C 2 ) (11) y(x) =e^{-\int P(x)dx} \left(\int Q(x)e^{\int P(x)dx}dx + C_1C_2\right) \text{(11)} y(x)=eP(x)dx(Q(x)eP(x)dxdx+C1C2)(11)
C = C 1 C 2 C = C_1C_2 C=C1C2, 则得原一阶线性微分方程的通解为:
y ( x ) = e − ∫ P ( x ) d x ( ∫ Q ( x ) e ∫ P ( x ) d x d x + C ) (12) y(x) =e^{-\int P(x)dx} \left(\int Q(x)e^{\int P(x)dx}dx + C\right) \text{(12)} y(x)=eP(x)dx(Q(x)eP(x)dxdx+C)(12)

推广到高阶线性微分方程

这是一阶线性微分方程的通解形式,其中:
u ( x ) = 1 C 1 ∫ Q ( x ) e ∫ P ( x ) d x d x + C 2 (10) u(x) =\frac{1}{C_1} \int Q(x)e^{\int P(x)dx}dx + C_2 \quad \text{(10)} u(x)=C11Q(x)eP(x)dxdx+C2(10)

v ( x ) = C 1 ⋅ e − ∫ P ( x ) d x (7) v(x) =C_1 \cdot e^{-\int P(x)dx} \quad \text{(7)} v(x)=C1eP(x)dx(7)

可以根据具体问题中的 P ( x ) P(x) P(x) Q ( x ) Q(x) Q(x) 进行相应的代入,得到具体的解。

多项式的高阶微分形式与展开

现在有一般n阶线性微分方程

给定方程如下:
P 0 ( x ) y + P 1 ( x ) y ′ + P 2 ( x ) y ′ ′ + … + P n ( x ) y ( n ) = Q ( x ) ( 10 ) P_0(x)y + P_1(x)y' + P_2(x)y'' + \ldots + P_n(x)y^{(n)} = Q(x)\quad(10) P0(x)y+P1(x)y+P2(x)y′′++Pn(x)y(n)=Q(x)(10)
由前述有, y ( x ) y(x) y(x) 可以表示为 y ( x ) = u ( x ) v ( x ) y(x) = u(x)v(x) y(x)=u(x)v(x)

两函数乘积的高阶微分形式

现在我们考察两函数乘积的高阶微分形式。比较二项式展开定理,我们不难发现,对 y = u v y=uv y=uv 的高阶微分具有类似的形式。比如:
( u v ) ′ = v ′ u + u v ′ ( u v ) ′ ′ = v ′ ′ v + 2 u v ′ ′ + u v ′ ′ (uv)' = v'u + uv' \quad (uv)'' = v''v + 2uv'' + uv'' (uv)=vu+uv(uv)′′=v′′v+2uv′′+uv′′
从原理上来看,展开多项式的每一项都应有高阶微分,而这些高阶微分分别分配在 u u u v v v 上。对于多项式的每一项,相当于任选 n n n 个微分算子作用于 u u u,则另有 n n n 个微分算子作用于 v v v,与二项式展开定理本质相同,所以展开形式也应相同。

则有式(11):
( u v ) ( n ) = C n 0 u ( n ) v + C n 1 u ( n − 1 ) v ( 1 ) + C n 2 u ( n − 2 ) v ( 2 ) … + C n n − 1 u ( 1 ) v ( n − 1 ) + C n n u v ( n ) ( 11 ) (uv)^{(n)} = C_n^0u^{(n)}v + C_n^1u^{(n-1)}v^{(1)} + C_n^2u^{(n-2)}v^{(2)} \ldots + C_n^{n-1}u^{(1)}v^{(n-1)} +C_n^nuv^{(n)} \quad (11) (uv)(n)=Cn0u(n)v+Cn1u(n1)v(1)+Cn2u(n2)v(2)+Cnn1u(1)v(n1)+Cnnuv(n)(11)

对原方程进行转化

将这个一般形式代回式(10),假设将 u u u 作为主要研究对象(以 v v v 为主要研究对象亦可,二者地位相同),则按 u u u 的导数降阶排列多项式:
M n − 1 ( x ) u ( n ) + M n − 2 ( x ) u ( n − 1 ) + … + M 0 ( x ) u ′ + ( P 0 ( x ) v + P 1 ( x ) v ′ + P 2 ( x ) v ′ ′ + … + P n ( x ) v ( n ) ) u = Q ( x ) ( 12 ) M_{n-1}(x)u^{(n)} + M_{n-2}(x)u^{(n-1)} + \ldots + M_0(x)u' + (P_0(x)v + P_1(x)v' + P_2(x)v'' + \ldots + P_n(x)v^{(n)})u = Q(x) \quad (12) Mn1(x)u(n)+Mn2(x)u(n1)++M0(x)u+(P0(x)v+P1(x)v+P2(x)v′′++Pn(x)v(n))u=Q(x)(12)
其中, M i ( x ) M_i(x) Mi(x) 为关于 x x x 的多项式。

按一阶情况下的原理,可以令多项式 P 0 ( x ) v + P 1 ( x ) v ′ + P 2 ( x ) v ′ ′ + … + P n ( x ) v ( n ) P_0(x)v + P_1(x)v' + P_2(x)v'' + \ldots + P_n(x)v^{(n)} P0(x)v+P1(x)v+P2(x)v′′++Pn(x)v(n) 消去 u u u项,解 v v v 即为解式 10 10 10对应的齐次线性微分方程: P 0 ( x ) v + P 1 ( x ) v ′ + P 2 ( x ) v ′ ′ + … + P n ( x ) v ( n ) = 0 P_0(x)v + P_1(x)v' + P_2(x)v'' + \ldots + P_n(x)v^{(n)} = 0 P0(x)v+P1(x)v+P2(x)v′′++Pn(x)v(n)=0

则剩下的式子为:
M n − 1 ( x ) u ( n ) + M n − 2 ( x ) u ( n − 1 ) + … + M 0 ( x ) u ′ = Q ( x ) M_{n-1}(x)u^{(n)} + M_{n-2}(x)u^{(n-1)} + \ldots + M_0(x)u' = Q(x) Mn1(x)u(n)+Mn2(x)u(n1)++M0(x)u=Q(x)
α ( x ) = u ′ ( x ) \alpha(x)=u'(x) α(x)=u(x),则上式化为:
M n − 1 ( x ) α ( n − 1 ) + M n − 2 ( x ) α ( n − 2 ) + … + M 0 ( x ) α = Q ( x ) M_{n-1}(x)\alpha^{(n-1)} + M_{n-2}(x)\alpha^{(n-2)} + \ldots + M_0(x)\alpha = Q(x) Mn1(x)α(n1)+Mn2(x)α(n2)++M0(x)α=Q(x)

结论

比较式 ( 12 ) 、 ( 13 ) (12)、(13) (12)(13),可以看到:通过常数变易法,成功地把求解一个n阶线性微分非齐次方程的问题,变成求解一个对应的 n n n阶线性微分齐次方程和一个 ( n − 1 ) (n-1) (n1)阶线性微分非齐次方程的问题。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
5G-Advanced(5G-A)是对5G网络进一步优化升级的一种发展路径。5G-A网络智能化标准进展包括以下几个方面。 首先,5G-A网络智能化标准在网络架构和协议方面进行了优化。通过引入更高级别的自动化、机器学习和人工智能技术,实现网络的智能管理和资源优化,提高网络的灵活性和效率。 其次,5G-A网络智能化标准在无线接入和传输方面进行了改进。通过改进多天线技术、调度算法和资源分配策略,提高网络的容量和覆盖范围,降低网络延迟和能耗,进一步提升用户体验和系统性能。 另外,5G-A网络智能化标准还在边缘计算和网络切片方面进行了研究。通过在网络边缘部署计算资源和服务,提供低延迟和高速率的应用,实现更个性化、灵活和安全的网络服务。同时,通过网络切片技术,根据不同应用场景和需求,将网络资源划分为不同的虚拟切片,为用户提供定制化的网络服务。 6G网络智能研究面临着一些挑战。首先,6G网络需要支持更高的数据速率和容量,以满足日益增长的用户需求。同时,6G网络需要在更高的频段和更复杂的信道环境下工作,面临着更多的干扰和传输难题。 其次,6G网络需要更强的安全性和隐私保护机制。随着物联网和人工智能的普及,网络中存在更多敏感信息和隐私数据,需要更加可靠和安全的通信技术来保护用户的隐私和数据安全。 另外,6G网络还需要在能源效率和环境友好性方面进行优化。高速传输和大规模数据处理会消耗大量能源,对环境造成影响。因此,研究人员需要研发更节能和环保的网络技术,实现绿色通信。 总之,5G-Advanced网络智能化标准推动了网络架构和协议的优化,提升了网络的灵活性和效率。而6G网络智能研究面临着更高的速率和容量需求、更强的安全性与隐私保护以及更低的能源消耗与环境友好性的挑战。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值