一阶线性非齐次微分方程的常数变易法

“我们所用的仅是他的结论,并无过程。”——来自百度百科“常数变易法”词条。
至于百科引文下面为什么给了思路和推导过程,我想应该是后人根据某拉格朗日大佬的结论逆推出来的。下面讲讲思路和推导过程。一切的一切,都来源于这个小贱人:,让你求y函数的表达式。直白的说,因为有P(x)和Q(x)在那里摆着,首先这个等式不一定齐次。即使齐次,只要Q(x)不等于0,就无法分离变量。而我们知道,变量分离是最根本的解法,俗称“万变不离其宗”。那完,这个没法分离变量。于是大佬跟它斗争了十一年,最后发现设是可以的.(下面简写为)哦当然当时设的时候他并不知道这样是可以的。总之大佬抱着试一试的心理代入了原式,得到.大佬不忘初心,始终坚持着变量分离的思想。“我要分离u和x!”(好吧是我有点中二QAQ)在这里插一句,为什么不是分离v和x呢?其实在这里v和u是完全对等的状态,可以说只是符号表示的不同,不信把上式中的v提出来,你会发现形式完全相同。回到正题…大佬想要分离u和x。乍一眼看,要是令等于零,那么一整项就不见了,能求出一个只跟随P(x)变化的函数v,再把v代进,积个分,u不就也出来了么。u和v都能用P(x)、Q(x)表示了,y也就出来了。按这个思路一路畅快地推导下来,得到,。一路愉快地求出y。其实到这里这道题就结束了,结论也可以随便用了。但是!(敲黑板)因为v是跟随P(x)改变而改变的,对每一个确切的一阶线性方程都只存在唯一的一个v,再根据以上的推导过程可以知道对每一个确切的一阶线性方程也只存在唯一的一个u,所以大佬决定省略以上推导过程,就不设,而是直接设,来求下面的过程。这就是常数变易法。关于思路,简单理一下——恩就是变量咋都分离不出来的时候大佬想了十一年猛然在一次打草稿的时候发现这种方法是行得通的。意思就是,真理摆在那里,被大佬发现了,而不是大佬本来就知道这个真理。关于数学思想,其实很简单——坚持不懈地尝试。搞科学的,常常只能用这种方法。同上,真理是用来发现的。关于题主“为什么常数变易法总能把一个线性非齐次常微分方程变为对应齐次方程和降阶的非齐次方程”的问题,不知道题主有没有注意到,中,u就是降阶的非齐次方程,而v是对应齐次方程。当令等于零时,形式上等同于Q(x)=0时的原有方程,也就是齐次方程。以下:所以有趣的是,不是常数变易法把一个线性非齐次常微分方程变为对应齐次方程和降阶的非齐次方程,而是我们从一个线性非齐次常微分方程中分离出了它的对应齐次方程,从而解出剩下的部分正好是它降阶的非齐次方程。然后我们用常数变易法来表示这种现象。如果还不能理解的话,我举一个栗子~对分解因式,我们知道x=1是一个根,即是一个因式,根据它,我们用多项式的除法求出另一个因式为。此时,原式被我们分解为两个因式(它原本就一定可以被分解为两个因式)。而我们把求另一个因式的过程称作多项式的除法(自创。。不知道学术上确切叫啥)。所以不是因为我们采取了多项式除法才能把多项式分解,而是这个多项式本来就能分解。要是有宝宝还要问,为什么一个线性非齐次常微分方程一定能分解为对应齐次方程和降阶的非齐次方程,那冒昧地问一句……为什么?

作者:东曦
链接:https://www.zhihu.com/question/31329122/answer/134977454
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
英文版 内容: 第0章 基础知识 1.多复变初步 柯西公式及应用 多变量 魏尔斯特拉斯定理及其推论 解析簇 2.复流形 复流形 子流形与子簇 De Rham和Dolbeault上同调 复流形上的积分 3.层和上同调 起源:米塔一列夫勒问题 层 层的上同调 De Rham定理 Colbeault定理 4.流形的拓扑 闭链的相交 庞加莱对偶 解析闭链的相交 5.向量丛、联络和曲率 全纯复向量丛 度量、联络和曲率 6.紧致复流形的调和理论 霍奇定理 霍奇定理I的证明??局部理论 霍奇定理II的证明??全局理论 霍奇定理的应用 7.Kahler流形 Kahler条件 霍奇恒等式和霍奇分解 Lefschetz分解 第1章 复代数簇 1.除子与线丛 除子 线丛 线丛的陈类 2.消灭定理及推论 小平消灭定理 超平面截面的Lefsclaetz定理 定理 (1,1)类的Lefsclaetz定理 3.代数簇 解析簇和代数簇 簇的次数 代数簇的切空间 4.小平嵌入定理 线丛和到投影空间的映射 胀开 小平定理的证明 5.格拉斯曼理论 定义 胞腔分解 Schubert微积分 万有丛 Plucker嵌入 第2章 Riemann曲面和代数曲线 1.预备知识 Riemann曲面的嵌入 Riemann-Hurwitz公式 亏格公式 G=1,1的情况 2.阿贝尔定理 阿贝尔定理??第一种描述 第一互反定律及推论 阿贝尔定理??第二种描述 雅可比反演问题 3.曲线的线性系统 互反定律II Riemann-Roch公式 典范曲线 特殊线性系统I 超椭圆曲线与黎曼点数 特殊线性系统II 4.Plucker公式 伴随曲线 分歧 广义Plucker公式I 广义Plucker公式II Weierstrass点 平面曲线的Plucker公式 5.对应 定义和公式 空间曲线的几何性 特殊线性系统III 6.复环面和Abel簇 黎曼条件 复环面上的线丛 函数 Abel簇上的群结构 固有公式 7.曲线及曲线的行列式 初步知识 黎曼定理 黎曼奇异定理 特殊线性系统IV Torelli定理 第3章 深入技巧 1.分布与流 定义;幂公式 平滑与整齐 流的上同调 2.流在复分析上的应用 解析簇相关的流 解析簇的相交数 莱维扩展与常态映射定理 3.陈类 定义 高斯博内公式 关于全纯向量丛陈类讨论 4.不动点与剩余公式 莱夫谢茨不动点公式 全纯莱夫谢茨不动点公式 博特剩余公式 广义Hirzebruch-Riemann-Roch公式 5.谱序列及其应用 滤子化双重复形的谱序列 超上同调 二类微分 勒雷谱序列 第4章 曲面 1.初步知识 2.相交数、从属公式与Riemann-Poch 胀开与收缩 二次曲面 三次曲面 2.有理映射 有理和双有理映射 曲线与代数面 面之间双有理映射的结构 3.有理曲面I 诺特引理 有理直纹面 广义有理曲面 极小度曲面 最大类曲线 施泰纳构造 Enriques-Petri定理 4.有理曲面II Castelnuovo-Enriques定婴 Enriques曲面 修正的三次曲面 中两个二次曲面的相交 5.无理曲面 阿尔巴内塞映射 无理直纹曲面 椭圆曲面简介 小平数和分类定理I 分类定理II K-3曲面 诺特曲面 6.诺特公式 平滑超平面的诺特公式 胀开子流形 曲面的寻常奇点 一般曲面的诺特公式 几个例子 曲面的孤立奇点 第5章 留数(残数) 1.留数的基本性质 定义和上同调解释 整体留数定理 变换则与局部对偶性 2.留数的应用 相交数 有限全纯映射 平面投影几何中的应用 3.交换同调代数应用初步 交换代数 同调代数 科斯居尔复形及其应用 凝聚层的简短游程 4.整体对偶 整体扩展 广义整体对偶定理解释 整体扩展和带孤立零点的向量场 整体对偶和曲面上点的剩余 模的扩张 曲面上的点和秩2向量丛 留数和向量丛 第6章 二次线丛 1.二次曲面初步 二次曲面的秧 二次曲面中的线性空间 二次曲面的线性系统 五个锥线论问题 2.二次线丛介绍 格拉斯曼G(2,4)几何 线丛 二次线丛和伴随库默尔曲面I 二次线丛的奇异线 两个构形 3.二次线丛的线 二次线丛的线簇 线簇上的曲线 两个修正构形 群则 4.二次线丛:Reprise 二次线丛和伴随库默尔曲面II 二次线丛的有理性 索引

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值